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Abstract—Quadratic fields are a basic object of study and 

class of examples in algebraic number theory. While we look at 

group acting on a set, we hope to gain insight into the 

symmetry of set, at the same time, to obtain a better feel for the 

group. Group actions on fields have diverse applications in 

physics, symmetries, algebraic geometry and cryptology. 

Congruence is nothing more than a statement of divisibility. 

However, it often helps to discover proofs and it suggests new 

ideas to solve the problems. Therefore the congruence classes 

have been used to explore the action of Möbius groups on 

quadratic fields. We investigate some proper subgroups of the 

Mobius group 𝑴 and used an important subgroup 𝑴′of 𝑴 in 

order to investigate the proper 𝑴−  𝒔𝒖𝒃𝒔𝒆𝒕𝒔 of 𝑸 ( 𝒎). This 

paper particularly demonstrates the actions of Mobius groups 

M' and in particular it has been proved that 𝑸∗ ( 𝒏)  is 

invariant under the action of 𝑴′ .  

 
Index Terms—Congruence, group action, linear 

transformations, mobius groups, quadratic fields. 

 

I. INTRODUCTION 

In the mathematical field of representation theory, group 

representations describe abstract groups in terms of linear 

transformations of vector spaces; in particular, they can be 

used to represent group elements as matrices so that the 

group operation can be represented by matrix multiplication. 

Representations of groups are important because they allow 

many group-theoretic problems to be reduced to problems in 

linear algebra, which is well-understood. They are also 

important in physics because, for example, they describe 

how the symmetry group of a physical system affects the 

solutions of equations describing that system. 

The term representation of a group is also used in a more 

general sense to mean any "description" of a group as a 

group of transformations of some mathematical object. 

More formally, a "representation" means a homomorphism 

from the group to the automorphism group of an object. If 

the object is a vector space we have a linear representation. 

Some people use realization for the general notion and 

reserve the term representation for the special case of linear 

representations.  

Group representations are a very important tool in the 

study of finite groups. They also arise in the applications of 

finite group theory to crystallography and to geometry. If 

the field of scalars of the vector space has characteristic p, 

and if p divides the order of the group, then this is called 

modular representation theory; this special case has very 
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different properties 

Group acting on a set involves thinking of elements of 

group as doing something to elements of other set, rather 

than as things satisfying a seemingly arbitrary list of axioms. 

For example in the group of symmetries of the square, the 

elements of the group rotate or reflect the point of square. 

Quadratic Fields are a rudimentary object of study and 

class of examples in Algebraic Number theory. The theory 

of Numbers is closely tied to other areas of Mathematics 

most especially to Abstract Algebra, but also Linear 

Algebra, Combinatorial Structures, Geometry and even 

Topology 

 Theory of Numbers sometimes called the higher 

arithmetic is one of the oldest areas of Mathematics. In a 

broader sense it is concerned with the properties of the 

positive integers including divisibility, greatest common 

divisor of two integers and the study of primes and 

composite numbers. The problems and conjectures in the 

number theory are by and large easy to state but often quite 

difficult to prove.  

The Theory of Congruence was introduced by Card 

Friedrich Gauss (1777-1855) one of the greatest 

Mathematicians of all times. Although, Pierre De Fermat 

(1601-1665) had earlier studied Number Theory. The 

Congruence is nothing more than a statement of divisibility. 

However, it often helps to discover proofs and we see that 

Congruence suggests new ideas to solve the problems that 

will lead to further interesting ideas.We have used 

congruence classes to explore the action of Möbius groups 

on the real quadratic fields in this paper.  

The Möbiustransformations are projective 

transformations of the complex projective line. Together 

with its subgroups, it has numerous applications in 

mathematics and physics. Möbius transformations are 

named in honor of August Ferdinand Möbius (1790-1868); 

they are also variously named homographic transformations, 

linear fractional transformations, bilinear transformations or 

fractional linear transformations. August Ferdinand Möbius 

was a German Mathematician and a theoretical astronomer. 

His interest was in Number theory also. The important 

Möbius Function and the Möbius inversion formula are 

named after him. Möbius Groups have always been of 

ardent attention in finding group actions on quadratic fields.  

Our interest is to discover linear transformation in general 

𝑥, 𝑦 satisfying the relations 𝑥^2 = 𝑦^𝑚 = 1, with a view to 

studying an action of the group 〈 𝑥, 𝑦 〉  on real quadratic 

fields. The group 〈 𝑥, 𝑦 〉 is trivial when 𝑚 = 1. If 𝑚 = 2, it 

is an infinite dihedral group and does not give inspiring 

information while studying its action on the real quadratic 

irrational numbers. For 𝑚 = 3 , the group 〈 𝑥, 𝑦 〉  is a 

modular group 𝑃𝑆𝐿(2, 𝑍).  

We are concerned in the group 〈 𝑥, 𝑦 〉for 𝑚 = 6.That is 

𝑀 = 〈 𝑥, 𝑦; 𝑥2 = 𝑦6 = 1 〉. 
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G Higman introduced coset diagrams for showing the 

action of modular groups on number fields. QaiserMushtaq 

laid the foundation and developed it further. 

In 1989, the extended modular group acting on the 

projective line over a Galois field is investigated. Some 

special circuits in coset diagrams have been shown. The 

authors discussed the group generated by two elements of 

orders 2 and 4 acting on real quadratic field. They have 

shown that ambiguous numbers in 𝑄∗ ( 𝑛  ) are finite and 

that part of the coset diagram containing these numbers 

forms a   single closed path under the action of G and the set 

is invariant under the action of G [12]-[16].  

The action of two generated group 𝐻 =  〈 𝑦, 𝑡:  𝑦^4 =

𝑡^4 = 1 〉on  𝑄( 𝑚  ) has been studied by using the coset 

diagram. It has also been shown that if α is of the form  

(𝛼 +  𝑛)/2𝑐 then every element in the orbit αH is also of 

the form (𝛼^′ +  𝑛)/(2𝑐′ ) and 𝛼𝐻 ⊂ 𝑄^ ∗ ( 𝑛  )[8]. 

These results were generalized by using the notion of 

congruence. It has been proved that for each square free 

positive integer n>2, the action of group 𝐺 on 𝑄^ ∗ ( 𝑛  ) is 

intransitive[9]. Some significant properties of real quadratic 

irrational numbers under the action of 𝑀 = 〈 𝑥, 𝑦 ∶  𝑥^2 =
𝑦^6 = 1 〉has been presented in [11].  

In [4] a classification of the real quadratic irrational 

numbers (𝑎 +  𝑛)/𝑐  of 𝑄∗ ( 𝑛  ) with respect to 

𝑚𝑜𝑑𝑢𝑙𝑜3𝑟has been presented. A general formula has been 

ascertained for this classification, by finding and 

subdividing the elements into the corresponding classes. 

A relationship among the actions of Group 𝐺  and 𝑀 on 

𝑄 ( 𝑚)  is established and an algorithm has also been 

generated by using Visual Basic for calculating the 

congruence classes of different moduli and manipulating the 

group action [3]. 

The notion of subgroups for finding the action of modular 

groups has been introduced and an important subgroup 𝑀′  

of 𝑀 has been familiarized in this context. The system of 

linear congruence is acquainted in order to discover 

𝑀 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 [2]. 

 

II. PRELIMINARIES 

Let us write 𝑔(𝛼)  or 𝛼𝑔  for the elements of 𝑋 to which g 

moves α. In this way we think of a group G as acting on 

system X. The action is determined when for g ∈G and α ∈X  

the corresponding element g(α) is specified. This simple 

notion of a group action has proved very fruitful. We shall 

find it profitable to build from a definition which generalizes 

the initial idea. Now we define the notion of a group action 

on a set. 

Let us consider a group G and non-empty set X. 

Define a mapping: 𝜑:𝐺𝑥𝑋 ⟶ 𝑋 by 𝜑(𝑔, 𝛼) = 𝑔(𝛼) for 

𝛼 ∈ 𝑋 , 𝑔 ∈ 𝐺 . If 𝑔(𝑕(𝛼)) = 𝑔𝑕(𝛼)  and 𝑒(𝛼) = 𝛼 for 

𝑔, 𝑕 ∈ 𝐺, 𝛼 ∈ 𝑋.  

Then 𝑋 is called 𝐺 − 𝑠𝑒𝑡 and the elements of 𝐺 may be 

operated upon with respect to the operation defined on G. 

A finite group G is called a finitely generated group if it 

has a finite set of generators. 

Properties: Every finite group is obviously finitely 

generated. Every finitely generated group in countable and 

any quotient of finitely generated is finitely generated. 

An algebraic integer of the form 𝑎 + 𝑏 𝑚, where 𝑚 is a 

square free, forms a quadratic field and is denoted by 

𝑄 ( 𝑚). If 𝑚 > 0, then 𝑄 ( 𝑚) is called real quadratic 

field. If 𝑚 < 0, then it is called imaginary quadratic field. 

Every real quadratic irrational number can be written 

uniquely as (𝑎 +  𝑛)/𝑐  where n is a non-square positive 

integer and a, ((𝑎^2 − 𝑛))/𝑐, 𝑐  are relatively prime 

integers. 

Möbius Transformation or Map is a function f of a 

complex variable 𝑧 that can be written in the form: 

𝑓(𝑧) = (𝑎𝑧 + 𝑏)/(𝑐𝑧 + 𝑏) for some complex numbers 

𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 with 𝑎𝑑 − 𝑏𝑐 ≠ 0. 

Let 𝑓 be the Möbius map given above andIf 𝑐 ≠ 0, we 

define𝑓(∞) = 𝑎/𝑐, 𝑓(−𝑑/𝑐) = ∞.  

If 𝑐 = 0, we define 𝑓(∞) = 0. 
Note: It is easy to see that for 𝑎𝑑 − 𝑏𝑐 = 0 the function f 

becomes constant. 

𝑓(𝑧) − 𝑓(𝑤) = ((𝑎𝑑 − 𝑏𝑐)(𝑧 − 𝑤))/((𝑐𝑧 + 𝑑)(𝑐𝑤 + 𝑑)) 

𝑓𝑜𝑟 𝑎𝑑 = 𝑏𝑐  𝑓(𝑧) − 𝑓(𝑤) = 0 

⟹ 𝑓(𝑧) = 𝑓(𝑤) 

The set 𝐶 ∪ {∞}  is called the Extended Complex Plane. 

The set of all Möbius Transformation forms a group under 

composition called the Möbius group. Every Möbius map 

is a bijection of 𝐶 ∪ {∞}onto itself, and the Möbius map 

form the Möbius group M with respect to the composition. 

 One of the most important subgroups of Möbius group is 

the modular group 𝑃𝑆𝐿 (2, 𝑍).  Consisting of all Linear 

Functional Transformation: 

𝑥 ′and 𝑦′, where  𝑥 ′: 𝑍 ⟶ −
1

𝑍
  and  𝑦′:  𝑍 ⟶

(𝑍−1)

𝑍
Another 

important subgroup of modular group is defined as: 

𝑀 = 〈 𝑥, 𝑦:  𝑥^2 = 𝑦^6 = 1 〉,where: 

𝑥:  𝑧 ⟶ −
1

3𝑧
 and 𝑦:  𝑧 ⟶ −

1

3 𝑧+1 
 

are fractional linear transformations. In our work we are 

mainly concerned with 𝑀. 

Let  𝑛 = 𝑘2𝑚, where m a square free positive integer and 

𝑘 > 0 be an integer, then  

Q∗  𝑛 ∶=  
𝑎 +  𝑛

𝑐
∶ 𝑎, 0𝑏 ∶=

𝑎2 − 𝑛

𝑐
, 0 𝑐 

∈ 𝑍  and  𝑎, 0
𝑎2 − 𝑛

𝑐
, 0𝑐 = 1   

is a proper  𝐺 − subset of 𝑄  𝑚  for all 𝑘.  

Let 𝑛 = 𝑘2𝑚, where m is a square free positive integer 

and k is any non –zero integer, then 𝑄′′′  𝑛  and 𝑄∗∗∗  𝑛  

are defined as 

𝑄′′′   𝑛 =  
𝛼

𝑡
; 𝛼 ∈ 𝑄∗  𝑛 ;   𝑡 = 1, 3   

𝑄∗∗∗  𝑛 =  
𝑎 +  𝑛

𝑐
∈ 𝑄∗  𝑛 :   3 𝑐   

Aslam et al. [5] have proved that the subsets 

 𝑄′′′   𝑛 𝑄∗∗∗  𝑛  of 𝑄( 𝑚  )    are M-subsets of  

𝑄( 𝑚  )   ∪  {∞}.  
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They have also shown that: 

𝑄′′′   𝑛 =  
𝛼

𝑡
; 𝛼 ∈ 𝑄∗  𝑛 ;   𝑡 = 1, 3   

is invariant under the action of 𝑀.  

It was shown in [5] that for 𝑛 ≢ 0 mod 9  , then  

𝑄∗∗∗  9𝑛 ∪  
𝑎

3
;   𝑎 =

3𝑎 +  9𝑛

𝑐
∈  𝑄∗  𝑛   𝑄∗∗∗  9𝑛   

is an 𝑀 − subset of 𝑄′′′   𝑛 , where  

𝑄∗∗∗  9𝑛 =  𝑄′′′   𝑛   𝑄∗∗∗  𝑛  

Lemma 2.1[4]: 

Let n be non-square positive integer. 

𝛼 ∈ 𝑄∗ ( 𝑛)with𝑏 =  (𝑎2 − 𝑛)/𝑐. 

If 𝑛 ≢ 0 (𝑚𝑜𝑑 9), then 𝛼/3 belongs to 𝑄∗ ( 𝑛  ) if and 

only if  3 |  𝑏. 

𝛼/3belongs to 𝑄∗ ( 9𝑛  ) if and only if 3 ∤  𝑏.                                                                        

If 𝑛  and 𝑚  are two distinct integers then 𝑄∗ ( 𝑛  )  and 

𝑄∗ ( 𝑚  ) are disjoint sets whereas 𝑄′′′′  ( 𝑛)  and 

𝑄′′′′  ( 𝑚)are not necessarily disjoint [2].  

In this paper we describe few important results relevant to 

action of some subgroups of Mobius group: 

 𝑀 = 〈𝑥, 𝑦: 𝑥^2 = 𝑦^6 = 1〉on the real quadratic fields 

and we proof that 𝑄∗ ( 𝑛  )is invariant under the action of 

𝑀′.  

Our first lemma produces that if (𝑎 +  𝑛)/𝑐  ∈

𝑄∗∗∗ ( 𝑛  ) with 𝑛 ≡ 0 (𝑚𝑜𝑑 3) then 𝑎 ≡ 0 (𝑚𝑜𝑑 3 ). 

Lemma 2.2: Let (𝑎 +  𝑛)/𝑐 ∈ 𝑄∗∗∗ ( 𝑛  )  with 𝑛 ≡
0 (𝑚𝑜𝑑 3) then 𝑎 ≡ 0 (𝑚𝑜𝑑 3 )  only.  

Proof:  

As we know that 𝑎2–  𝑏𝑐 ≡  𝑛 (𝑚𝑜𝑑 3).  

Thus𝑎2 ≡ 𝑏𝑐 + 𝑛 (𝑚𝑜𝑑 3). 

So 𝑎^2 ≡ 0 (𝑚𝑜𝑑 3). 

Since 𝑐 ≡ 0 (𝑚𝑜𝑑 3) for all (𝑎 +  𝑛)/𝑐 ∈ 𝑄^ (∗∗∗

) ( 𝑛). Therefore  𝑎 ≡  0 (𝑚𝑜𝑑 3). 
 

III. SUBGROUPS OF M 

We present the concept of subgroups of the Mobius group 

𝑀   in [2]  and explore the action of some important 

subgroups of 𝑀 on 𝑄( 𝑚  ). A subgroup of a group 𝑀 is a 

subset of 𝑀 which itself form a group under the operation 

defined on the group 𝑀.  

Since 𝑀  is a finitely generated group. Then it contains 

infinitely many two generator subgroups. Given group 

𝑀 and an element 𝑥 of 𝑀, the set of all powers of 𝑥  is a 

subgroup of 𝑀. Then this subgroup is called the subgroup 

generated by 𝑥 and written 〈 𝑥 〉. 
It is observed here that investigating the actions through 

the subgroups gives very useful and interesting results and 

this will become a fruitful technique to explore more M - 

subsets. 

 

IV. A SUBGROUP 𝑀' 

Let us focus mainly in studying an action of group 𝑀′ : 

𝑀′ = 〈 𝑢, 𝑣 〉 where 𝑢 =  𝑥𝑦  and  𝑣 =  𝑦𝑥  are linear 

fractional transformations: 

𝑢: 𝛼 ⟶ 𝛼 + 1  and𝑣: 𝛼 ⟶ 𝛼/(1 − 3𝛼) 

It is easy to see that: 

𝑢𝑛 = 𝛼 + 𝑛and𝑣𝑛 =   𝛼/(1 − 3𝑛(𝛼) )   ; 𝑛 = 1,2,⋯ 

These equations imply that 𝑢 , 𝑣 are of infinite order.  

By using fundamental relations between 𝑢and 𝑣, we can 

derive more relations. Since each 𝑔 ∈  𝑀′ is a word in  𝑥𝑦, 

𝑦𝑥 , 𝑦2 and 𝑦4 . Therefore 𝑢, 𝑣, (𝑣𝑢), 𝑢(𝑣𝑢), 𝑢(𝑣𝑢)2, (𝑣𝑢)𝑣 

and (𝑣𝑢)2 are important elements of  𝑀′.  Since for 𝑢, 𝑣 are 

generators of 𝑀′,  𝑢 =   𝑥𝑦  and  𝑣 =  𝑦𝑥.  

Note that: 

𝑣𝑢 =  𝑦𝑥𝑥𝑦 =  𝑦2and𝑢𝑣 =  𝑥𝑦𝑦𝑥 =  𝑥𝑦2 𝑥 

Clearly , (𝑣𝑢)3 =  (𝑢𝑣)3 = 1.  

The group G and M' are overlapping.  

Since, 𝑥𝑦 =  𝑦′ 𝑥′ then 𝑥𝑦 (𝛼)  =  𝑦′ 𝑥′ (𝛼) , for all𝛼 ∈

 𝑄∗ ( 𝑛). 
Therefore one of the generators of the group 𝑀′ can be 

written in the words of the group 𝐺 but other generator of 𝑀' 

that is 𝑦𝑥 cannot be written in the words of 𝐺. Thus 𝐺 and 

𝑀 ′are not same rather both groups are overlapping. In the 

next section we explore the 𝑀 −  𝑠𝑢𝑏𝑠𝑒𝑡𝑠. 
Lemma 4.1[4]: 

 Let 𝑀 = 〈 𝑥, 𝑦:  𝑥2 = 𝑦6 = 1 〉 and 𝑀′ = 〈 𝑢, 𝑣 〉 , then 

〈 𝑀′, 𝑥 〉 = 𝑀. 
We also notice that many subgroups of the of Mobius 

group M exist.  

Let us take 𝑀′′ = 〈 𝑥𝑦 〉and   𝑀′′′ = 〈 𝑦𝑥 〉. 

Notice that 〈 𝑥𝑦, 𝑥 〉  =  𝑀  and 〈 𝑦𝑥, 𝑥  〉 =  𝑀  which 

ensures that  〈𝑀′′, 𝑥〉 = 𝑀 and  〈𝑀′′′ , 𝑥〉 = 𝑀.  

Thus 𝑀′ , 𝑀′′  and 𝑀′′′  are the proper subgroups of the 

Möbius group 𝑀.  

Since we are concerned here with two generator groups, 

therefore the group 𝑀^′ is of much importance.  

Now we discuss properties of real quadratic irrational 

numbers under the action of 𝑀′ . In particular we prove that 

𝑄∗ ( 𝑛) is invariant under the action of 𝑀′ . For this we 

need the following lemmas. 

Lemma 4.2:  

Let  𝐺 = 〈 𝑥′, 𝑦′:  𝑥 ′ 2 = 𝑦′ 3 = 1 and  𝑀 = 〈 𝑥 𝑦:  𝑥2 =
𝑦6=1 .  

Consider 𝛼 =
𝑎+ 𝑛

𝑐
∈  𝑄∗  𝑛 \𝑄∗∗∗ ( 𝑛) . 

Then  𝑥𝑦 (𝛼)  ∈ 𝑄∗ ( 𝑛) and 𝑦𝑥 (𝛼) ∈ 𝑄∗ ( 𝑛) . 
       

Proof: 

Clearly xy = y′x′  . Since    y′x′ ∈  G.  

Therefore  𝑥𝑦  𝛼 ∈ 𝑄∗  𝑛 for 

all 𝛼 ∈ 𝑄∗( 𝑛 )𝑎𝑠   𝑄∗( 𝑛 )  is invariant under the action 

of G.  

Let 𝛼 =
𝑎+ 𝑛

𝑐
∈ 𝑄∗( 𝑛 ). 

Then 3𝛼 =
3𝑎+ 9𝑛

𝑐
, where𝑏′ =

9𝑎2−9𝑐

𝑐
= 9𝑏 

Put  3𝛼 =
𝑎 ′ + 𝑛 ′

𝑐 ′
; 𝑎′ = 3𝑎, 𝑏′ = 9𝑏, 𝑐′ = 𝑐 
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 𝑎, 𝑏, 𝑐 = 1 ⟺  3𝑎, 9𝑏, 𝑐 = 1 ∵ 𝑐 ≢ 0 (mod 3). 

Thus  𝑦′′𝑥′ 3𝛼 ∈ 𝑄∗( 𝑛 )   
∵ 𝑥 ′ , 𝑦′′ , 𝑃𝑆𝐿(2, 𝑍). 

𝑦′′ 𝑥 ′ 3𝛼 =
3𝑎 − 9𝑏 +  9𝑐

−6𝑎 + 9𝑏 + 𝑐
  by Table I 

1

3
𝑦′′ 𝑥 ′ 3𝛼 =

𝑎 − 3𝑏 +  𝑛

−6𝑎 + 9𝑏 + 𝑐
 

This implies that  

𝑎′′ = 𝑎 − 3𝑏,  𝑏′′ = 𝑏,  𝑐′′ − 6𝑎 + 9𝑏 + 𝑐 

Since 𝑐 ≢ 0 (mod 3), therefore 𝑐′′ ≢ 0 (mod 3) 

⟹  𝑎′′ , 𝑏′′ , 𝑐′′  = 1 

⟹
1

3
𝑦′′ 𝑥 ′ 3𝛼 ∈  𝑄∗( 𝑛 ) 

We know that: 

𝑦𝑥 𝛼 =
1

3
𝑦′′ 𝑥 ′ 3𝛼  

Therefore, 𝑦𝑥 𝛼 ∈  𝑄∗( 𝑛 ) 

This completes the proof. 

In the last lemma it has been proved that 𝑄∗ ( 𝑛)\

𝑄∗∗∗ ( 𝑛) is invariant under the actions of  𝑥𝑦and  𝑦𝑥. Also 

we know, if a non-square positive integer 

𝑛 ≡ 1,3,4,6 𝑜𝑟 7 (𝑚𝑜𝑑 9)   then 𝑄∗∗∗ ( 𝑛)  is invariant 

underthe actions of  𝑥𝑦and  𝑦𝑥.  

Thus we need to show that for each 𝑛 ≡ 0 (𝑚𝑜𝑑 9), 

𝑄∗∗∗ ( 𝑛)is invariant under the actions of𝑥𝑦 and  𝑦𝑥. For 

this we have the following theorem. 

Theorem 4.1: 

If 𝑛 ≡ 0 (𝑚𝑜𝑑 9)be a non-square positive integer then 

𝑥𝑦 (𝛼) and 𝑦𝑥 (𝛼) ∈ 𝑄∗∗∗ ( 𝑛) for all 𝛼 ∈ 𝑄∗ ( 𝑛). 
Proof: 

Let 𝑛 ≡  0 (𝑚𝑜𝑑 9)and (𝑎 +  𝑛) / 𝑐 ∈ 𝑄∗∗∗ ( 𝑛). 

Then from Lemma 2.1, we have 𝑎 ≡ 0 (𝑚𝑜𝑑 3). 
Also b≢0(mod 3)∵(𝑎, 𝑏, 𝑐) = 1.  

Now 𝛼 = (𝑎 +  𝑛)/𝑐 

⇒ 𝛼𝑎𝑎𝑕 = (3𝑎′ +  9𝑛′))/3𝑐′  

⇒ 𝛼 =
𝑎′ +  𝑛′

𝑐′
 

⇒  𝑏 =
9𝑎′ 2 − 9𝑛′

3𝑐′
 

= 3[(𝑎′ 2 − 𝑛′)/𝑐′ ] = 3𝑏′  

Since 𝑏 ≢ 0  𝑚𝑜𝑑 3 , so 3 | 𝑐′ . 
Therefore we take  𝑐′ = 3𝑐′′ .  

Thus =  
𝑎 ′ + 𝑛 ′

3𝑐′′
                                          (1) 

 Also (𝑎, 𝑏, 𝑐) = 1 ⟺ (𝑎′  , 𝑏′ , 𝑐′′  ) = 1. 

[1] 𝑥 ′𝑦′ 3𝛼  = 𝑥 ′𝑦′  3 
𝑎 ′ + 𝑛 ′

3𝑐 ′′
   by Equation(1). 

⇒ 𝑥 ′𝑦′ 3𝛼 = 𝑥 ′𝑦′  
𝑎 ′ + 𝑛 ′

𝑐 ′′
  

𝑏′ ′=  
𝑎′2 − 𝑛′

𝑐′′
  and

𝑎′ +  𝑛′

𝑐 ′ ′
∈ 𝑄∗∗∗  𝑛′  

𝑥 ′𝑦′ 3𝛼 =  
𝑎′−𝑏

′
+ 𝑛′

2𝑎′+𝑏
′
+𝑐′′

  by Table I 

Thus, 
1

3
 𝑥 ′𝑦′ 3𝛼  ∈ 𝑄∗∗∗  9𝑛′  by Lemma 2.2.  

Therefore : 

𝑦𝑥 𝛼 =
1

3
𝑦′′ 𝑥 ′ 3𝛼  =

1

3
𝑥 ′𝑦′ 3𝛼 ∈ 𝑄∗∗∗  𝑛  

⟹ 𝑦𝑥 𝛼 ∈ 𝑄∗∗∗  𝑛 . 

Also, 𝑥𝑦 𝛼 = 𝑦′𝑥 ′ 𝛼 ∈ 𝑄∗∗∗  𝑛  is obvious. 

Therefore, 𝑥𝑦, 𝑦𝑥 ∈ 𝑄∗∗∗ ( 𝑛) for all α∈𝑄∗∗∗ ( 𝑛) .Hence 

the result. 

 

V. CONCLUSION 

We conclude this paper with the following immediate 

consequences: 𝑄∗ ( 𝑛) \ 𝑄∗∗∗ ( 𝑛) is invariant under the 

action of 𝑀′ . 𝑄∗∗∗ ( 𝑛) is invariant under 𝑀    for 𝑛 ≡
1, 3, 4, 6 𝑜𝑟 7 (𝑚𝑜𝑑 9).  Since 𝑀′is a subgroup of  𝑀. So the 

result holds for 𝑀′ also If𝑛 ≡ 0 (𝑚𝑜𝑑 9), be a non-square 

positive integer then 𝑄∗∗∗ ( 𝑛)is  invariant under the action 

of 𝑀′ = 〈 𝑥𝑦, 𝑦𝑥 〉. The idea of action through subgroups 

can be extended to other Mobius groups. Furthermore action 

of subgroups can be defined for imaginary quadratic fields 

and one can get several interesting results. 

APPENDIX 

  a b c 

𝑥 𝑎  −1

3𝛼
 

−𝑎 𝑐

3
 3𝑏 

𝑦 𝑎  −1

3(𝛼 + 1)
 

−𝑎 𝑐

3
 3(2𝑎 + 𝑏

+ 𝑐) 

𝑦2 𝑎  −(𝛼 + 1)

3𝛼 + 2
 

−5𝑎

− 3𝑏

− 2𝑐 

2𝑎 + 𝑏 + 𝑐 12𝑎 + 9𝑏

+ 4𝑐 

𝑦3 𝑎  −(3𝛼 + 2)

3(2𝛼 + 1
 

−7𝑎

− 6𝑏

− 2𝑐 

12𝑎 + 9𝑏 + 4𝑐

3
 

3(4𝑎 + 4𝑏

+ 𝑐) 

𝑦4 𝑎  −(2𝛼 + 1)

3𝛼 + 1
 

−5𝑎

− 6𝑏

− 𝑐 

4𝑎 + 4𝑏 + 𝑐 6𝑎 + 9𝑏

+ 𝑐) 

𝑦5 𝑎  −(3𝛼 + 1)

3𝛼
 

−𝑎 − 3𝑏 (6𝑎 + 9𝑏 + 𝑐)

3
 

3𝑏 

𝑥𝑦 𝑎  𝛼 + 1

 

𝑎 + 𝑐 2𝑎 + 𝑏 + 𝑐 𝑐 

𝑥𝑦2 𝑎  3𝛼 + 2

3(𝛼 + 1)
 

5𝑎 + 3𝑏

+ 2𝑐 

(12𝑎 + 9𝑏 + 4𝑐)

3
 

3(2𝑎 + 𝑏

+ 𝑐) 
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𝑥𝑦3 𝑎  2𝛼 + 1

3𝛼 + 2
 

7𝑎 + 6𝑏

+ 2𝑐 

4𝑎 + 4𝑏 + 𝑐 12𝑎 + 9𝑏

+ 4𝑐 

𝑥𝑦4 𝑎  3𝛼 + 1

3(2𝛼 + 1
 

5𝑎 + 6𝑏

+ 𝑐 

(6𝑎 + 9𝑏 + 𝑐)

3
 

3(4𝑎 + 4𝑏

+ 𝑐) 

𝑥𝑦5 𝑎  𝛼

3𝛼 + 1
 

𝑎 + 3𝑏 𝑏 6𝑎 + 9𝑏

+ 𝑐 

𝑦𝑥 𝑎  𝛼

1 − 3𝛼
 

𝑎 − 3𝑏 𝑏 −6𝑎 + 9𝑏

+ 𝑐) 

𝑦2𝑥 𝑎  1 − 3𝛼

3(−1 + 2𝛼)
 

5𝑎 − 6𝑏

− 𝑐 

(−6𝑎 + 9𝑏 + 𝑐)

3
 

3(−4𝑎

+ 4𝑏 + 𝑐 

𝑦3𝑥 𝑎  1 − 2𝛼

−2 + 3𝛼)
 

7𝑎 − 6𝑏

− 2𝑐 

−4𝑎 + 4𝑏 + 𝑐 −12𝑎 + 9𝑏

+ 4𝑐 

𝑦4𝑥 𝑎  2 − 3𝛼

3(−1 + 𝛼)
 

5𝑎 − 3𝑏

− 2𝑐 

(−12𝑎 + 9𝑏 + 4𝑐)

3
 

3(−2𝑎 + 𝑏

+ 𝑐) 

𝑦5𝑥 𝑎  𝛼 − 1

 

5𝑎 − 3𝑏

− 2𝑐 

−2𝑎 + 𝑏 + 𝑐 𝑐 
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