
  
Abstract—We establish theoretical and numerical analysis 

such as existence and uniqueness of solutions, asymptotic 
behavior to the energy and numerical discretization by Finite 
difference and Finite element methods to a nonlinear diffusion 
equation with nonlinearities local and nonlocal. 

 
Index Terms—Nonlinear diffusion equation, global solution, 

B-spline polynomial, finite element method, numerical solution. 
   

I. INTRODUCTION 

Let Ω  be an open, bounded and connect set of nR  with 
smooth boundary .Γ  The objective of this paper is to show 
the existence, uniqueness and asymptotic stability of the 
energy of the solutions of equation (1) below, we also present 
some numerical results related to these topics. 
The equations read   
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where M  and f  are real-valued functions and all 
derivatives of system (1) are considered in the distribution 
sense. 

The nonlocal term in equation (1) is derived by an 
approach of the Fourier law when, for example, in the case of 

),(= txθθ  being the temperature and its measurements are 
not made locally (pointwise), but on average across the 
conductor .Ω . Thus, the Fourier law can be given by 

θτ ∇− )(= tv  where τ  is the function  i.e. the thermal 
diffusivity depends on the total heat in the region Ω . For 
more detail about that, see [1] and [2]. 

 ))((=)( dxtMt θτ ∫Ω
 

In this work we present some simple contributions to the 
theoretical analysis of the model investigated in [1] and [3]. 
Additionally, we develop a numerical method following 
some ideas introduced in [4], and show some numerical 
results associated with the asymptotic behavior of the 
solution of equation (1). 
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We shall follow the usual notation for functional spaces, 
see for instance [5] or [6]. 

 

II. EXISTENCE, UNIQUENESS AND EXPONENTIAL DECAY 
In order to state the main results, we consider some 

hypotheses on the real-valued functions M  and f . 
Namely,  

0

M is continuos on IR
and M(s) M >0, s IR.
f(0)=0 and f is Lipschitz continuous
on IR with a Lipschitz constant  L.

≥ ∀ ∈      (2) 

 
Definition 2.1   A global strong solution for the nonlinear 

initial-boundary value problem (1) is a real-valued function 
),( txθ  defined on )[0, ∞×Ω  such that   
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 The function θ  satisfies the identity integral for all 

( ).)(;0, 1
0

2 Ω∈ HTLϕ  Moreover, θ  satisfy the initial 

conditions  (1) 3 . 
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Theorem 2.1   Suppose )(1
00 Ω∈ Hθ . Then there exists a 

unique global solution of (1) in the sense of Definition 2.1, 
provided the hypotheses in (2) hold, and the energy 

2|)(=|)( ttE θ  satisfies the estimate   

0,e(0))( ≥≤ tallforEtE tζ               (5) 

 
 with the constant ( )102:= λζ ML −  where L  and 0M  are 

defined in (2) and 1λ  represents the first eigenvalue of the 
Laplace operator.  

As a simple consequence of this theorem, we preent a 
simple condition for the decay of the solution energy in the 
following corollary. 

Corollary 2.1: When 10 /> λLM , the energy of the 
solution asymptotically decays to zero as time increases.  

Proof of the existence of solutions. We use the 
Faedo-Galerkin method. Let NIiiw ∈)(  be a Hilbertian basis 
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of eigenvectors for the Laplace operator in )(1
0 ΩH . For each 

NIm ∈  we obtain the approximate solution  

     )()(=),(
1=

xwtgtx ii

m

i
m ∑θ                         (6) 

   
 corresponding to the approximate problem   
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 for all { }.,,= 1 mm wwspanWw …∈  Problem (6) has a local 

solution mθ  in the interval )[0, mt  and its extension to the 
half-line )[0, ∞  is a consequence of the first estimate 
established below.  

 Estimate I -  Setting mw θ2=  in (6) we get that  
 

0.=)),(2(||)(2|| 22
mmmmm fM

dt
d θθθθθ +∇+ ∫Ω

 

 
Using the hypothesis (2) we get that   

     .||2||2|| 22
0

2
mmm LM

dt
d θθθ ≤∇+          (8) 

Applying the Poincaré inequality 22
1 |||| mm θθλ ∇≤  the 

Gronwall lemma and the fact that (0mθ  converges in )(2 ΩL  
we arrive at  

 0,ee|(0)||)(| 0
22 ≥≤≤ tCt tt

mm
ζζθθ           (9) 

 with a constant ∞<|(0)|sup= 2
0 mmC θ . 

 
Estimate II - Taking mw θΔ−2=  in (7) 1  it yields  

( ).),(2=||2|| 22
mmmm fM

dt
d θθθθ ΔΔ+∇  

 
  Using hypothesis (2) together with the Cauchy-Schwarz,  

Poincaré and Young’s inequalities, we have that for any 
0>ε   
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Finally, considering 0= Mε , integrating in time and 
using the Gronwall lemma we get  

t2 1
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 Estimate III - Setting mw θ′=  in (7) 1 , we get   

 ( )2
m m m m m m| | = M( ) , (f ( ), )θ θ θ θ θ θ ′Ω
′ ′Δ −∫         (11) 

Using hypothesis (2) together with the Cauchy-Schwarz 
inequality we obtain  

.||||)(|| mmmm LM θθθθ +Δ≤′ ∫Ω
 

Using estimates (9) and (10) we arrive at   

{ } t2 1t t2 2
m t 2 00

e 1| (s) | ds M C e L C
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 where  t
t t 0 0

|l| Kt

M = M(l), with K = max{C ,C e }max ζ

≤

�  

The estimates (9), (10) and (12) allows us to pass to the 
limit in the approximate solutions mθ . In fact, for any 

0>T  we can extract a subsequence N∈μμθ )(  of the 

sequence of approximation ,)( N∈mmθ  such that   

)).(;(0, 
))()(;(0, 

22
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 Morever, since the injection of )()( 21
0 Ω∩Ω HH  into 

)(1
0 ΩH  is continuous we also have that 

))(];([0, 1
0 Ω∈ HTCθ  and 0=(0) θθ . 

The convergence (13) are sufficient to pass to the limit as 
∞→μ  in the first two terms of the approximate system (7), 

but is not sufficient to analyse the nonlinear terms. Moreover, 
we need convergence in ))(;(0, 22 ΩLTL  in order to 
determine the limit of these terms  

 

m m mM( (t)dx) (x, t) and f ( (x, t))θ θ θ
Ω

Δ∫  

as the injection of )()( 21
0 Ω∩Ω HH  into )(1

0 ΩH  is 
continuous and compact then (13) enable us to apply 
compactness result, cf. Aubin [6] or Lions [7], and thus we 
can extract a subsequence of ,)( N∈μμθ   which still shall be 

reprepresented by ,)( N∈μμθ   such that                                            

)),(;(0, 1
0

2 Ω→ HTLstronglyθθμ         (14) 

 and whence we get   

      a.e. in [0,T].μθ θ→ Ω×             (15) 

 

Analysis of the term μμ θθ Δ∫Ω
)( dxM  

We will proof the following convergence:   
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  (15) 
 as ∞→μ  for all ( ))(;0, 1

0
2 Ω∈ HTLv .  Note that   
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 As )()()( 12 ΩΩ∈ LLt °μθ  then  

IR| ( ) | | ( ) |μ μθ θ
Ω

≤ ≤∫ t dx C t C  

 
From this, (15), Lebesgue dominated convergence 

theorem and continuity of M , it results  

0|))(())((| →− ∫∫ ΩΩ RIdxtMdxtM θθμ     (18) 

as ∞→μ . By Cauchy-Schwartz inequality and (10), we 
have  

( ) 2 2

IR

1 1, v | | | |
2 2μ μθ θ∇ ∇ ≤ ∇ + ∇ ≤v C  

From this and precedent convergence, it yields   
 

( )[M( ) M( )] , v 0μ μθ θ− ∇ ∇ →∫ ∫ ∫
T

0 Ω Ω
θ   

 
 as ∞→μ . Now we analyze the last term on the right-hand 
side of (17). Initially, note that  
 

0|))((| ≥≤∫Ω
tallforCdxtM RIθ  

 
and by Cauchy-Schwarz inequality, we have  
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From (14) we have θθμ →  in ))(;(0, 1
0

2 ΩHTL  as 

.∞→μ  Thus   
 

[ ] 0,),) ((
0

→∇∇−∇∫∫ Ω
dtvdxM

T
θθθ μ   (19) 

   
as ∞→μ . Inserting (19) and (18) into (17) we conclude 
that (16) is fact.  

Analysis of the term )( μθf : As )( μθ  is bounded in 

))(;(0, 22 ΩLTL  and )(0 RICf ∈  then 

)).(;(0,))(( 22 ΩLTLinboundedisf μθ   

From this and (15), it yields   
 

f ( ) f ( ) a.e. in [0,T].μθ θ→ Ω×           (20) 

 
 From (13), (20) and Lions’ lemma (cf. [6], ch. I, Lemma 

1.3), we get   
2 2( ) ( ) weak in L (0,T;L ( ))μθ θ→ Ωf f         (21) 

 
 Taking to the limit ∞→μ  in (6), and using the 

convergence (16) and (21) we obtain at least one function θ  
satisfying the identity integral in (4). The regularities in (3) 
are given by estimates (12) and (10)  

Uniqueness of solutions.  The uniqueness of the global 
solution can be obtained using the energy method. 

Asymptotic behavior.  The aim now is to prove the 
inequality (4). Taking the scalar product of )(2 ΩL  on both 

sides of (1) 1  with θ  and using the hypotheses (2), we get  
 

,|)(||)(|)( 22
0 tLtMtE θθ ≤∇+′                  (22) 

 
 where 0>L  is given by |||)(| ξξ Lf ≤  for all RI∈ξ    

and   .|)(|
2
1=)( 2ttE θ  As )()( 1

0 Ω∈ Htθ  then 

,|)(||)(| 22
1 tt θθλ ∇≤  where 1λ  is the first eigenvalue of 

the Laplace operator. Thus, from (22) we obtain   
 

( )0 1( ) 2 ( ) 0 for all 0λ′ + − ≤ ≥E t M L E t t  

 From this we have that (5) follows.  
 

III. APPROXIMATION SOLUTION 
 To obtain the numerical approximate solutions we use 

both the finite element method and the finite difference 
method. Moreover, some numerical experiments are 
presented for analysis of the model. 

Substituting  (6)  into the approximate system  (7) and 
taking mj Vxww ∈)(= , we obtain,  
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We define the square matrix A  and B  of order ,mm ×  

the vector ))((( tfC mθ  of order 1×m , the real number kM  

and the real function )(ˆ tg  by;  
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Substituting (23) in (22), we obtain the system  
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ij
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Since that, A  and B  are symmetric matrices , we get the 
following nonlinear ordinary differential system;  

0=))(()())(ˆ()( m
' fCtBgtgMtAg θ++        (25) 

where 0=(0) gg  is the initial data and 
t

m tgtgtg )]((),...,([=)( 1  is the vector to be determined at 
each time t . 

 

IV. FINITE ELEMENT METHOD 
To calculate the matrices of the nonlinear system (24), we 

need to introduce the basis function mi Vw ∈ . Note in  (??) 

trizes) that the vector M  and the function ))(( mfC θ  are 
dependent on the variable t , then to get a better precision of 
the approximate solutions we will use the B-splines as basis 
function to define the subspace mV , which are cubic splines. 
See, for instance in [4], the definition and a procedure to 
change the B-spline to satisfy the Dirichlet boundary 
condition. 

Thanks to definition the base function, we can to calculate 
the values of matrices A  and B . 

Approximation of the nonlinear term )))((( tfC mθ : 
The nonlinear term is approximated linearly in each interval 

],[ 1+jj xx  as follows: 
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Using the definition of the base function jw , we can 

calculate the vector components ).(tC j
 

 Calculation of the term ))(ˆ( tgM : Analogously, using 

the definition of the base function jw  and the definition of 

real number kα  in  (24) , then we can calculate de function 

)(ˆ tg  as follows;  
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V.   FINITE DIFFERENCE METHOD 
For the nonlinear ordinary differential system  (25) with 

the matrices characteristics (dependent on the variables x  
and t ) to obtain the solution is not always possible in 
continuous time. So, we will apply a numerical method to 

determine the approximated solution for this system, using 
the approximate implicit Crank-Nicolson method (see, for 
instance, [9]). 

From the temporal discretization and considering 
)(= n

n tθθ  we define the the approximation and the first 
derivative of the time, by  

1
1 n ' 12 = ( g )/2, ( ) = ( )/ .

+ + ++ − Δ
n n n n

tn
g g g t g g t  

For the system  (25)  at the discrete mesh points 
tntn Δ= , using approximation above, we obtain the 

following the discrete system:  
 

1 1 11
2 2 2( ) = 0

+ + + +−
+ +

Δ

n n n n ng gA M Bg C
t

 

where, we are denoting )(= nn gMM  and 

)),((=)(= j
n
m

n
j

n wfCfCC θ . 

Multiplying the above equation by tΔ2  then, we can 
rewrite the equation above as;  
 

⎪
⎩

⎪
⎨

⎧

+Δ−Δ−
Δ+

+

++

Nnforgg
CCtgBtMA

gBtMA
nnnn

nn

"0,1,==(0)
)()(2

=)(2

0

1
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 (27) 

 
The nonlinear iterative system (27) can be implemented, 

for example, using the Newton’s Method. The solvability of 
this system yields the vector solution ),,,(= 11

2
1
1

1
mgggg "  

at time ttt Δ== 1 . Therefore, for Nn ,1,2,= "  we will 
get by the same procedure the values of 

),,,(= 21
n
m

nnn gggg " . 
 

VI. NUMERICAL SIMULATIONS 
  In this section, attention is turned to the computation of 

approximate solutions. 
The following example concerns the accuracy and 

convergence rate of the numerical method. With this aim in 
mind, we compare the exact and approximate solutions of an 
equation obtained from (1) by adding a non zero right hand 
side unction ),( txg . We test two different situations: (a) the 
linear case where the function 1)( ≡sM  and 0)( ≡θf , and 
(b) a non linear case with 20.5=)( ssM +  and the 
nonlinearity 3=)( θθf . 

In both cases, we consider an spatial interval 1][0,=][0,L , a 

final time 1=T , the initial condition )(sin=)(0 xx πθ  and 
choose the function ),( txg  in such a way that the exact 
solution is given by )(sine=),( xtx t πθ . 

The numerical solutions are computed for different 
discretizations and the corresponding numerical errors are 
calculated in the 2L (0,T;L [0, 1])∞  norm. It is remarkable that 
the results for both cases are qualitatively similar. For case 
(b), they are summarized in Table I. 
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TABLE  I: NUMERICAL ERRORS AND CONVERGENCE RATE FOR THE NON 

LINEAR CASE (B). 
tΔ  xΔ  Error Convergence  rate 

1e-4 0.0015625 9.4447e-07 - 
 0.0007812 2.3612e-07 2.0000 

 0.0003906 5.9037e-08 1.9999 

 0.0001953 1.4774e-08 1.9985 
1e-5 0.0015625 9.4446e-07 - 
 0.0007812 2.3612e-07 2.0000 

 0.0003906 5.9029e-08 2.0000 

 0.0001953 1.4753e-08 2.0004 
    

It is worth noticing that the convergence rate of the 
proposed numerical method for the linear case is known to be 
quadratic. Moreover, our numerical results suggest that a 
similar convergence rate is also valid in the non linear case. 
This result illustrates that the proposed numerical method can 
be readily used for the computation of accurate approximate 
solutions to equation  (1). 

The next example is related to the asymptotic behavior, as 
t  goes to infinity, of the solutions of equation  (1) with the 
nonlinearity )(=)( 3 θθθ −af . We consider two cases, in the 
local case (a) the function 1)( ≡sM , and in the nonlocal case 
(b) ssM e=)( . 

In case (a) equation (1) is known as the Chafee-Infante 
equation. The asymptotic behavior of the solutions in this 
case is well understood and was thoroughly studied in [10]. 
They established that when the parameter a  passes through 
an eigenvalue of the laplacian a bifurcation occurs. 

In Fig. 1 we present the bifurcation diagram representing 
the dependence of the asymptotic solution mass when the 
parameter a  changes in the interval [5,15]. Our results 
suggest that in the nonlocal case (b) a bifurcation occurs at 
the same value 2

1crit == πλa  as for the Chafee-Infante 
equation. 

5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Bifurcation diagram

Nonlinerity amplitude

∫ θ dx

 

 
M(s) = exp(s)

M(s) ≡ 1

 
Fig. 1. First bifurcation for the Chaffee-Infante equation in the local and 

nonlocal cases. 
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