



Abstract—In market-based Grid systems, a main aim is to

execute jobs with considered quality of service requirements

based on user defined budget. Since grid has heterogonous

resource with unpredictable faults, the user cost constraints and

expected service requirements may not provided. Therefore,

using a better approach to resource scheduling to reduce fault is

necessary. This paper presents a predictive approach on fault

tolerance mechanisms for faultless job scheduling on

market-based grids. The Case-Based Reasoning technique has

been used for selecting fault tolerant nodes. This approach

applies a specific structure in order to prepare fault tolerance

between provider nodes to retain system in a safe state with

minimum data transferring. Certainly, this algorithm increases

fault tolerant confidence therefore, performance of grid will be

high.

Index Terms—Market-based grid, fault tolerance, case-based

reasoning, job scheduling.

I. INTRODUCTION

Grid computing is an amazing infrastructure to solve some

problems that need to strong and heavy computation with

very long time execution [1]. It is cooperation of different

computers, for a specific task, so that the user acquires better

performance for that specific task. In this environment, the

resources are geographically distributed, but in logical

aspect, these are as virtual single resource with high

performance [2]. Grid computing allows a group of

computers to share the system securely and optimizes their

collective resources to meet required workloads by using

open standards OGSA (Open Grid Services Architecture)

[3]. The Grid allows executing jobs in different nodes. In

order to perform job scheduling and resource management at

Grid level, usually it has used a Resource scheduler or a

meta-scheduler. A scheduler is fundamental in any

large-scale Grid environment. The task of a Grid resource

scheduler is to dynamically identify and characterize the

available resources, and to select the most appropriate

resources in order to submit jobs. In grid scheduling

discussion, selecting best nodes with looking at economic

and fault tolerance criteria is considerable [4]. Choosing the

suitable fault tolerance resource for a user job to meet

predefined constraints such as deadline, speedup and cost of

execution is an important problem in the grids. In our

approach, we highly have solved some of these problems.

As known, grid scheduling consists of three steps. The
first step is resource discovery and filtering, and the second is

Manuscript received March 4, 2013; revised May 18, 2013.

The author is with the Faculty of Information Technology and Computer

Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran (e-mail:

a.bouyer@azaruniv.edu).

selecting nodes and scheduling jobs to related nodes, and the
last step is submitting and monitoring jobs. Surely, step 2 is
vital because some nodes always have best behavior, while
some others often have fault with low performance [5].

In scheduling phase on grid, schedulers usually use some

information about resources‟ attributes (CPU speed and load,

memory) to do the scheduling. The information used by the

schedulers is usually provided by an information service that

is responsible for gathering data about all resources that

compose the grid. Key problem is that information obtained

from the grid information service (GIS) may be out of date by

the time the scheduler needs it to schedule tasks. In our

approach, we have used an online scheduling with novel

information.

Since optimized case-based Reasoning (OCBR) is one of
the preferred problem-solving strategies and machine learning
techniques in complex and dynamically changing situations,
we used an optimal fault tolerance approach by applying an
optimized case-based Reasoning algorithm to prediction,
detection and recovery of faults in grid [6].

The rest of this paper is organized as follows. Section II

gives an overview on previous research in fault tolerance

resource scheduling. Section III describes an optimized CBR

that is used in our method. Section IV discusses the system

design and implementation details of our Grid resource

scheduling respectively. Section V describes experimental

results and Section VI concludes the paper.

II. RELATED WORKS

In recent years, many researchers have offered many

methods, frameworks or algorithms for dynamic job

scheduling in different notions. The most objective was

failure nodes problem in task scheduling. Unfortunately in

the grid, the possibility on failure in resource node is not

deniable. In the past, many fault tolerance job scheduling has

been suggested for grid or cluster computing [7], [8].

S. Baghavathi Priya and et al. presented a fault tolerance

approach for Task Scheduling by using Genetic algorithm on

grid [5]. They have used checkpoint technique in their

method that is a general-purpose method for providing fault

tolerance in distributed systems. Check pointing allows the

recovery to a previous correct state. Due to simplicity and

understandability, their method is a good one. Nevertheless,

for a large-scale computing with thousands nodes, surely this

algorithm take much time. In addition, they have considered

some assumptions for scheduler, which require more

investigation.

GRIDTS is another infrastructure for Fault-Tolerant

Scheduling in Grid environment [7]. This proposed approach

allows scheduling decisions to be made with up-to-date

A Reliable and Fault Tolerant Job Scheduling System in

Market-Based Grids Using Case-Based Reasoning Method

Asgarali Bouyer

261

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

DOI: 10.7763/IJMO.2013.V3.278

information about the resources. GRIDTS provides

fault-tolerant scheduling by combining a set of fault tolerance

techniques to deal with crash faults in components of the

system. Fault tolerance in GRIDTS is enforced using a

combination of mechanisms. Their approach does not use

GIS information, because GIS information might be

abrogated.

B. Nazir and T. Khan present another approach that is

simply performable [8]. They developed a new method for

fault tolerant job scheduling in grid. Proposed approach

maintains history of the fault occurrence of resource in Grid

Information Service (GIS). Whenever a resource broker has

job to schedule, it uses the fault occurrence from history

information, and depending on this information, it uses

different intensity of check pointing and replication while

scheduling the job on resources that have different tendency

towards fault. They claimed that it increases the percentage

of jobs executed within specified deadline and allotted

budget, hence helping in making grid trustworthy. However

it is possible that this algorithm cannot be optimal, because

data in GIS might be old and abrogated.

There are some other related works such as [9]-[11] that

we devolve them to readers.

III. OCBR ALGORITHM

The proposed approach in this paper uses a prediction

algorithm to detect the treatment of nodes for new jobs. This

approach applies OCBR algorithm [6], the CBR method on

the basis of Decision Tree, in order to select suitable

sampling. OCBR consists of two phases:

Phase 1: primary processing of information to make

Decision Tree and assigning each existing record (or sample)

to its related class. Decision Tree in this research is used to

select a best training set in appropriate branches, that coming

job exists in those branches, for CBR algorithm [12].

Phase 2: final processing and predicting the situation of a

record (coming job) by using neighboring records.

At the first step, to identify the main and efficient

parameters in existing database system and to clarify their

effect on final result, we do a processing operation on the

obtained results. Then we try to classify the information into

different classes (by using decision tree classifier). At the

second step, we try to insert the desired record into its class

according to previously done classification in Decision Tree.

Then considering the number of desired neighbors, we select

the existing records that are similar to our desired record and

perform the predicting operation (CBR algorithm).

At first, the information or primary system parameters are

identified and integrated. Next, we can get the final result by

performing the final processing among the desired record and

its neighbors (in the same class).

IV. SYSTEM ARCHITECTURE

In this approach, there is a local database for every node in

grid that is considered to store some useful information about

submitted jobs and status of execution. When a new job is

submitted on a node, then a new recode will be inserted to its

database. In addition, we have considered a queue on grid

scheduler that is called Reservation Queue, to support faulted

nodes. When one of the nodes in site is failed, if reservation

queue is not empty, then a new node replace with faulted

node. Scheduler is responsible to this change node, because

that is aware from status of nodes in site by using message

passing. We have shown a general architecture for this

approach (Fig. 1). For the nonce, we have provided an

isolated application that must be installed and executed on

each node as well as another application that will be installed

on scheduling machine for this purpose.

A. Scheduler’s Application

This application is responsible to select fault tolerance

nodes and doing a fault tolerant cycle to retain system in a

tolerant safe state. For implementing a fault tolerance

scheduling, we shall do following phases:

Phase 1: coordinator is responsible to send a packet to

every node on grid. This packet include some information

about new coming job and a request for executing OCBR [6]

in local database by desired node based-on this coming job.

Scheduler wants to find nodes with the least fault and best

performance in past. Then, the produced results will be sent

to coordinator to be saved in a temporary XML database

(TXD).

Phase 2: coordinator will insert all received results from

each node in a TXD. After that, Resource Analyzer will

analyze this results based-on fault tolerant criteria and job

condition by executing several queries to get better and

squarer decision. For example, it finds a node that has best

fault tolerance for small jobs but it is not suitable for heavy

jobs. Therefore, the scheduler must consider coming job

status in its decision or selection. Then, Resource Analyzer

Fig. 1. The architecture of proposed approach for fault reducing.

262

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

selects the best fault tolerance nodes to start operations; and

extra nodes will reserve in a queue that we called it

Reservation Queue. Also for each node it will consider a

priority.

Phase 3: creating a Virtual topology in a Ring form, based

on the nearest neighbor on the right side of each node -as near

as possible and without any node repetition. Now, if there is

a fault happens in one of the nodes, Fault Recovery is called

to resolve it. At the beginning, Fault Recovery will check

Reservation Queue to find a node for replacing with failed

node, but “what will it do if the queue is empty?”

Since the job belonging to failed nodes may be an

important job with high priority, so this job should not be left

unfinished and scheduler is forced to run it. Therefore, Fault

Recovery section will send a message to left-hand of faulted

node in order to create a connection with right-hand of

faulted node and its job transfer to right-hand node to

continue this unfinished job there. Of course, we do not want

to apply many nodes for reservation, because, we have

developed this approach based on economic-based grid. As

you know, in the real world, nobody likes others to use

his\her computer free.

B. The Applied Virtual Topology

 When scheduler had selected desired nodes, it will create

a virtual topology in the form of a ring. An important point

that must be mentioned is that in this topology, each node is

communicating with right side node and these two nodes are

the nearest possible neighbors. In other words, all nodes have

a near neighbor on their right-hand. If a node failed, with the

assumption that queue is empty, scheduler will do as follows:

 Step1: Fault Recovery Section scans cause of failure. If

the related node has a hardware problem it will do step2.

If the node is alive, but it cannot continue the its related

job for the reason such as CPU-Idle RAM or Secondary

Storages problem, then Fault Recovery Section will

define a random time, called chance time to revival, in

order to revive probability. If in this allocated time, the

desired node has started again, it needn‟t do any

operation. Otherwise, it must start step 2.

 Step2: At this step, Fault Recovery Section will transfer

the job of failed node to right-hand node. If transferred

job has a real-time priority, then desired node can stop its

job and start this real-time job, but its job also had a

Real-time priority then it can transfer previous job to

next node. For getting a better performance we can use

checkpoint technique in while of executing job.

Since the discovered node in grid is superabundant,

therefore, we usually will not have the lack of computing

resources problem. Nevertheless, it is likely that the problem

pay fee for powerful and reliable resources such as

Super-computers or Cluster-computers have been existed.

But, surely we don‟t have problem in using a usual resource

computing, for example Personal computers (PCs).

C. Node’s Application

For better prediction, we have provided a specific Node‟s

Application (NA) for every node in a purposed grid. NA

contains an internal local database that considered for

recording all events about submitted jobs by grid and only

Event Recorder section can write in database. When a new

job accepted and submitted on node, or while a job are

completed or failed, this section will record all of mentioned

events in its database. This section is more important.

Also, there is a section that we called „Analyzer and

Producer‟. As mentioned above, before determining fault

tolerant nodes, scheduler sends a packet that includes

information about coming job (e.g. IP Sender, Size of the job,

Size of needed RAM and HDD, average time needed for

execution, approximate execution start time, minimum power

to CPU, etc.) to each discovered nodes. When Analyzer and

Producer section have received the packet, at the first time, it

sends job information to event recorder to register on

database; after that, if this request was acceptable according

to existing resources on node, then OCBR executer will start

to carry out case-based reasoning algorithm. Moreover, each

node has computed the fowling measures in order to send to

scheduler.

1) Average Hit Ratio (HR): This attribute represents an
average rate of success in all previous times.

2) Hit Ratio for the last twenty jobs (RT).

3) Hit Ratio for this time-period on previous days (TP)
based-on a estimation on coming job execution. For
example, how many jobs have been executed from 1.30
AM to 2.00 AM?

The following observations are considered:

 Count(SJi): returned the number of successfully finished
jobs on nodei

 Count(FJi): returned the number of failed jobs on nodei
 Count(STi): returned the number of successfully finished

jobs in the last 20 submitted jobs on nodei
 Count(APJi): returned the number of all jobs submitted at

this time, on the previous days on nodei
 Count(NSPi): returned the number of all jobs successfully

finished at this time, on the previous days on nodei

  

   
i

i

i i

Count SJ
HR

Count SJ Count FJ




 (1)

   20i iRT Count ST

       
        

2
1

 


   

i

i

i i

Count NSPi Count SJi Count FJ
TP

Count APJ Count SJi Count FJi Count APJ

 (2)

 

100

i

i

CPU IDLE
IDLE 

 

i
i

i

Free Available phisical memory
RAM

Size of RAM
 (3)

Then, this above computed result along with produced

rules will send to scheduler in a XML document. When

Resource Analyzer take the above produced result, it

computes the below formula for iPR according to weight

allocation to each parameter; of course, this weight identified

after several experience.

263

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

 

 

0.5 0.4 0.8

0.4 0.2

     
 

    

i i i

i

i i

i

i

HR RT TP
count SJ

IDLE RAM
PR

count FJ
 (4)

The
iPR parameter shows a status of node ith in previous

history. For example, we have three nodes that their

conditions almost are same but
iPR for each node are

different. Whenever each node's
iPR is high then its priority

also is better than others.

V. EXPERIMENT RESULTS AND DISCUSSION

To evaluate proposed scheduler technique, we simulate a

grid environment. Although we had previously provided 64

nodes in different places, this had been done for other

purposes; anyway, these samples were sufficient for this

research. Therefore, we used these samples in our simulator.

In this simulator we considered 64 nodes. Each simulated

node had its own local database. As we mentioned before, in

these local database all events about job submission on the

node have been saved. In this environment, there are two

level schedulers; high-level scheduler and local scheduler. In

this research, we have concentrated on local scheduler

because each scheduler can act independently from other

local schedulers. Every scheduler in desired site is scheduling

nodes independently from other scheduler. Suppose that all

64 nodes are available in simulated grid and we want to select

some nodes for our purposes. When we want to start

execution, at first, all 64 nodes will execute OCBR algorithm

and then will send obtained results to TXD database. Then

scheduler‟s application compares all gathered results to select

the best fault tolerance. These results are produced by

scheduler according to priority in Table I.

TABLE I: PROVIDER NODES‟ SPECIFICATIONS WITH THEIR PRIORITY

Node‟s

Name
priority

predictio

n
PRi

CPU-idl

e

Free

RAM

Small

job

Med

job

Larg

job

Node1 0.89 0.91 24.1 0.54 0.02 VG G G
Node2 0.87 0.95 29.8 0.77 0.04 VG M M
Node3 0.84 0.82 21.9 0.97 0.05 G M M
Node4 0.94 0.95 62.3 0.87 0.43 VG VG G
Node5 0.95 0.96 75.6 0.98 0.39 EX VG VG
Node6 0.92 0.95 56.4 0.46 0.38 VG VG G
Node7 0.90 0.93 42.5 0.8 0.28 G G M
Node8 0.78 0.80 20.8

5

0.65

1

G M VW

Node9 0.92 0.91 48.9 0.8 0.28 VG G G
Node10 0.83 0.89 34.8

5

0.65

1

G G M

… … … … … … … … …

EX= Excellent [95% to 100%];

VG=Very Good [85% to 95%]

G= Good [70% to 85%)

M= Medium [50% to 70%)

W= Weak [30% to 50%)

VW= Very Weak [0 to 30%)

Then we chose some nodes that had the best condition to

execute an example job (memory need= 10.41and estimation

time to execution= 850sec). After 14 experiments we reached

objective results and then compared these results with

another approach in [8]. The results have been represented in

Fig. 2.

As you see, due to apply OCBR methods in resources

scheduling, we obtained better results than FTGS method [8].

Moreover, we compared successfully finished jobs in any

way in these methods that results have been showed in Fig. 3.

It seems that, the New Approach tries to complete a job in

one of the three existing ways. Therefore it has a good ability

in successfully finishing job and it has a better fault tolerance

feature.

We have brought time execution in our approach in Fig. 4

to compare with Fig. 5 that show FTGS method results. To

reach this aim, we have done three experiments for small,

medium, and large jobs. The results are mentioned below.

Fig. 2. The number of failure nodes in our approach and FTGS method

Fig. 3. Evaluation the failure jobs in our approach with FTGS method.

Fig. 4. Time execution for different jobs based on selected nodes by new

proposed method

264

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

Fig. 5. Time execution for different jobs on selected nodes in FTGS method

VI. CONCLUSION AND FUTURE WORKS

In Grid environments, job failures can occur for various

reasons such as resource failure, network failure, RAM or

Storage or CPU Problems, and software problems. In this

paper, we presented a new approach to improve grid

utilization, fault tolerance in grid scheduling and decrease

completion time of jobs. The proposed grid-scheduling

approach can select the best fault tolerance nodes and also

detect a failure node and simply manage it by using one of the

provided strategies. The obtained results by our simulation

indicate that the new approach may be very effective for

adaptive grid scheduling due to reliability, fault tolerance,

and then decrease of job completion time. As part of our

future work, we are going to extend our approach by dynamic

and intelligent component in scheduling phase.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:

enabling scalable virtual organizations,” International Journal of

Supercomputer Applications, vol. 15 pp. 200–222, 2001.

[2] A. Bouyer, A. H. Abdullah, and M. H. Mokhtari, “Localized job

scheduling system using cooperative and system-centric scheduling

policy for market-oriented grids,” Journal of Scientific Research and

Essays, vol. 6, pp. 3729-3750, 2011.

[3] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New

Computing Infrastructure: USA: Morgan Kaufmann, 2003, ch. 17.

[4] A. Bouyer and S. M. Mousavi, “A Predictive Approach for Selecting

Suitable Computing Nodes in Grid Environment by Using Data Mining

Technique,” in Proc. Advances in Computational Science and

Engineering, China, 2009, pp. 190-205.

[5] S. B. Priya, M. Prakash, and K. K. Dhawan, “Fault tolerance-genetic

algorithm for grid task scheduling using check point,” in Proc. the Sixth

International Conference on Grid and Cooperative Computing,

Urumchi, Xinjiang, China, 16-18 Aug., 2007.

[6] A. Bouyer et al., “A new hybrid model using case-based reasoning and

decision tree methods for improving speedup and accuracy,” presented

at the 4th Iadis International Conference Applied Computing 2007,

Salamanca, Spain, 2007.

[7] F. Favarim et al., “GRIDTS: A new approach for fault-tolerant

scheduling in grid computing,” presented at the Network Computing

and Applications (NCA 2007), Sixth IEEE International Symposium

on, Cambridge, MA , 2007.

[8] B. Nazir and T. Khan, “Fault tolerant job scheduling in computational

grid,” presented at the Emerging Technologies, 2006. ICET '06.

International Conference on, Peshawar, Pakistan, 2006.

[9] R. P. R. Duan and T. Fahringer, “Short paper: data mining-based fault

prediction and detection on the grid,” presented at the 15th IEEE

International Symposium on High Performance Distributed

Computing, Paris, Frans, 2006

[10] L.-O. Burchard et al., “VRM: a failure-aware grid resource

management system,” International Journal of High Performance

Computing and Networking, vol. 5, pp. 215-226, 2008.

[11] R. F. Lopes and F. J. d. S. E. Silva, “Fault tolerance in a mobile agent

based computational grid,” in Proc. the Sixth IEEE International

Symposium on Cluster Computing and the Grid, Singapore, 2006.

[12] X. Qin and W. C. Regli, “A study in applying case-based reasoning to

engineering design: Mechanical bearing design,” Journal of Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, vol.

17, no. 3, pp. 235-252, 2003.

Asgarali Bouyer is an assistant professor in the faculty of

computer engineering and information technology at

Azarbaijan Shahid Madani University, Tabriz, Iran. He

received Ph.D. degree in Computer Science from

University of Technology Malaysia (UTM), in 2011. His

research interests are in distributed computing (Grid and

cloud computing), Data mining and mobile computing.

Application areas include bioinformatics, cluster

computing and data mining, etc. He has been involved in several Iran

research projects.

265

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

