

Abstract—The process of programming includes the

creation, compilation, and execution of programs to perform a

specific task. The Visual Programming Environment (VPE)

provides visual approaches to programming for writing

programs graphically, such type of programming platform

benefits in rapid prototyping, visual representation of data

flow - understanding the logic of the program, and visual

debugging. Our approach improves integrated development by

way of platform independence combining modules developed

using various environments including Microsoft .NET, JAVA,

Windows Shell, Win32, COM, MATLAB and Web Services.

This paper explores an Integrated Visual Programming

Environment (IVPE), including concepts of a network as a

system and icon based programming with utility in domain-

specific applications such as image processing, algorithm

performance measurement, etc. Our newly developed IVPE,

Visual Sequencer (VIsual SequencER - VISER) provides an

environment for integrating run-time components such as

.NET (managed DLL assemblies), Java (class files), MATLAB

(DLLs generated by mcc matlab compiler), Win32 (unmanaged

DLL libraries), COM objects, and Web Services (WSDL

supported). We have also presented some test cases of image

processing which utilizes various processing modules from

various programming environments.

Index Terms—Visual programming environment, data flow

programming, rapid Application development, windows shell,

Microsoft, NET framework, java, Win32, COM, MATLAB,

windows services, image processing.

I. INTRODUCTION

Program is a sequence of instructions or lines of codes

and is required to perform specific task(s). A program can

have n number of linked libraries, references or components

helping to achieve a required task. In this paper we propose

an Integrated Visual Programming Environment for

representing the flow of execution of various components

derived from multiple platforms like Microsoft .NET,

JAVA, Windows Shell, Win32, MATLAB, COM, and Web

Services. We have developed a platform known as VIsual

SequencER (VISER), a VPE where programs are created

graphically in a WYSIWYG fashion. In VISER, program

refers to a paradigm that is provided by the VPE. With the

increase in programming language environments and their

syntactical approaches, one should be aware of the syntax.

There are various programming environments for

building programs without knowing syntax but one should

be having a logical approach which can be an easy process

Manuscript received January 7, 2013; revised April 18, 2013.

The authors are with the Advanced Data Processing Research Institute

(ADRIN), Govt. of India, Department of Space, 203, Akbar Road,

Tadbund, Secunderabad-500009, Andhra Pradesh (A.P), India (e-mail:

hariom@adrin.res.in, phani@adrin.res.in, kalka@adrin.res.in,

director@adrin.res.in).

for writing programs.

Visual programming is a solution where we need not be

aware of the syntax. The process of visual programming

includes both the visual creation of programs and the of

programs executing [1]. Key benefits of using VPE are rapid

prototyping, requires less programming skills (main focus

on program logic than syntax), visual representation of data

flow, visual representation of all the activities going with

data (like data input, outputs, functions, debugging,

execution, etc). With the help of VISER, one can test and

measure the performance of algorithms (Section V) and one

can find the best performed algorithm among various

algorithms.

II. INTEGRATED VISUAL PROGRAMMING ENVIRONMENT

Shu (1988) defines Visual Programming as the use of

meaningful graphic representation in the process of

programming [1]. Visual programming is programming in

which more than one dimension is used to convey semantics

[2], [3]. The process of programming includes both the

visual creation of programs and the visualization of

programs executing [1]. Benefits of using VPE are its rapid

prototyping, visual representation of data flow from creation

to its execution (including task debugging, exception

handling, what others programming can do). There are

various VPEs like VisiQuest [4], Synopsis [5], Ariane [6],

and Cantata [7]. VisiQuest provides various VPE features

but integration of JAVA class objects, DLLs are not

supported. Synopsis has a support of integration of DLLs

only not for JAVA Class objects. None of the above existing

VPEs provides integration of various components to provide

a platform independent environment having support of

Microsoft .NET framework, Web Services, JAVA, Win32,

COM, MATLAB and Windows Shell.

A. Viser Framework

Fig. 1 shows VISER framework which provides an

integrated platform independence model of an application or

integrated system functionalities built on any platform

including Microsoft .NET, Web Services, JAVA, Win32

APIs, COM, MATLAB and Windows Shell based host

scripts. The core component of the framework is its Virtual

Execution Environment (VEE) where program flow is

parsed and individual activity is executed on their respective

platforms.

Responsibilities of VEE are listed as below:

VISER runtime environment: Provides various facilities

for running and managing the VISER flows.

Implicit data type conversion: Provides various implicit

facilities to convert data from one type to another type. E.g.,

Integrated Visual Programming Environment

Hari Om Prakash, R. Phani Bhushan, S. Venkataraman, and Geeta Varadan

256

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

DOI: 10.7763/IJMO.2013.V3.277

String to Integer, Integer to String, Integer to Long, etc.

DOTNETHelper: Provides various facilities for .NET

code functionality extraction and their execution.

JVMHelper: Facilities for running and managing java

byte code. JVMHelper engine provides a bridge between

.NET and JAVA environment through a Java Native

Interface (JNI).

Fig. 1. Viser framework.

Win32Helper: Engine provides interoperability between

Win32 libraries and .NET. C/C++ interface has been

implemented which is integrated in VISER VEE.

Win32Helper is responsible for the management of Win32

function extraction and execution of extern or publically

declared functions.

WindowsShellHelper: WindowsShell engine provides the

facilities to use host scripts (Shell based executables) to

enable successful run at command prompt but the feature

provides to use scripts in a visual programming fashion like

adding a visual activity (element), assigning executable to it,

adding and passing parameter.

MATLABHelper: For running and managing MATLAB

MEX binaries. Engine provides an interface to run

MATLAB MEX DLLs compiled by mcc compiler.

Viser Class Library: Provides various features including

user defined Viser flows, data and data access,

cryptographic libraries, data base connectivity, network

communications, etc.

 Automatic file path handling.

B. Viser Flow Manager (GUI)

Fig. 2 shows VISER GUI which has been developed on

WPF (Windows Presentation Foundation), which is a next-

generation presentation system for building Windows client

applications with visually stunning user experiences [8].

Fig. 2. Viser user interface.

257

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

In data flow programming (VPE), all the operations can

be performed visually like visually creation of flow

programs, argument passing, cut, copy & paste of visual

elements. Properties can be set using a property window to

individual or selection list visual elements.

III. PROGRAMMING WITH VISER

In Fig. 3, flows are depicted which explains how the

program flows are programmed on visual programming

platform and how they are helpful to understand program

logic.

The flow is used for encoding and decoding a text.

Encoding visual element (Base64 encoding) is used to

encode “INPUT TEXT” which results to generate a base64

text output “SU5QVVQgVEVYVA==”. Result of Encoding

element is passed to Decoding element (Base64 decoding)

which generates a decoded output “INPUT TEXT”.

Fig. 3. Encoding & Decoding example

IV. TEST CASES

VISER provides a higher level of abstraction where user

can add own components from multiple platform binaries to

make it common for user specific applications. Main

components are listed below:

 Image processing, cryptographic, scientific

computations, etc.
 Date Time components.
 Data input and output.

A. Image Processing Samples

VISER provides a separate visual element image I/O

which can display input and output images. Processed

images can be saved into various standard formats (BMP,

JPEG, TIFF, GIF, PNG, ICO, WMF, and EMF). Image

processing samples: Fig. 4 and Fig. 5.

B. Distributed Execution: Web Services

Visual Sequencer provides direct support for integration

of web services. VISER supports web services in WSDL

format. An example is depicted in Fig. 6.

Fig. 4. ImageInvert: image processing – inverting the image using various

algorithms (Multi flow)

Fig. 5. Horizontal edge detection

Fig. 6. A visual program with web services

V. TEST AND MEASUREMENT

VISER is not limited to visual programming or data flow

programming but one can have the following features:

 Measure the performance of algorithms.
 Comparative study to analyze which is the best

algorithm.
 Measure the performance on cross platforms (.NET

framework, JVM, etc).
 Measure the performance across the network

systems (heterogeneous systems).

258

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

VISER embeds a direct support of measuring the

performance after the execution of program flow. We tested

the flow “ImageInvert” of image processing for the purpose

of knowing the best algorithm to invert the bitmap image as

depicted in Fig. 4. ImageInvert uses three algorithms:

 InvertUsingGDI+

 InvertUsingColorMatrix

 InvertUsingUnsafeCode (Using pointers).

After execution of ImageInvert project,

InvertUsingUnsafeCode takes much lesser time than other

algorithms as shown in performance chart Fig. 7. This is

because the operations in pointers are faster than others.

Fig. 7. Performance test for invert algorithms (Fig. 4)

VI. EXCEPTION HANDLING

Successful and unsuccessful activities will be monitored

in two levels. Firstly, exceptions will be thrown by

individual frameworks with stack trace information and

secondly, in VISER framework itself. Exceptions are logged

every time when they are thrown and can be checked by

right clicking on unsuccessful or red color marked activities

as depicted in Fig. 8.

Fig. 8. Exception handling

VII. VISER PERFORMANCE

VISER was tested on HP Workstation xw4200, Intel PIV

(HT) 3.40GHz, 1 GB of RAM, Windows XP Service Pack

3. We underwent some more tests including single and

multi-flow programs.

Flow program ImageInvert as depicted in Fig. 4, tested on

individual frameworks and VISER framework, performance

chart is shown in Fig. 9. We concluded that VISER takes

slightly more processing time because of parsing of data

flow programs and some explicit data validation processing.

Fig. 9. ImageInvert performance test on VISER (Red color) and without

VISER (blue color)

VIII. CONCLUSION

In this paper, our approach enriches programming

environment by integrating multiple platforms into an

Integrated Visual Programming Environment (IVPE) called

Visual Sequencer - VISER where building a program is not

a big task for those who don’t know the syntax of the

program. “Anyone can do programming” is the main goal of

VPE. Using VPE in our approach also enriches RAD (Rapid

Application Development) system for developing programs.

VISER is very helpful in testing and measuring algorithms

in various dimensions including cross platforms and across

network systems.

Application usages of VISER:

 Design and development of visual flow graphs

depicting applications.

 Test and Measurement of algorithms.

 Analysis and simulation of the programming

problems.

IX. FUTURE WORK

We have implemented a platform where programs are

written graphically using multiplatform components. Some

of future activities are integrating a secure execution

environment which can detect malicious activities

performed during program execution, distributed execution

of flow processes, enriching visual programming

environment which will be useful to “anyone can do

programming” concept.

REFERENCES

[1] N. C. Shu, Visual Programming, Van Nostrand Reinhold, New York,

1988, ch. 1, pp. 9.

[2] M. Burnett, “Visual programming,” Encyclopedia of Electrical and

Electronics Eng., J. G. Webster, ed. New York: John Wiley & Sons,

1999.

[3] M. Burnett, "Software engineering for visual programming

languages," Handbook of Software Engineering and Knowledge

Engineering, vol. 2, World Scientific Publishing Company, pp. 77-92,

June 2001.

259

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

[4] VisiQuest: A Problem Solving Environment for Scientific Computing

and Visualization. [Online]. Available:

http://www.aertia.com/docs/accusoft/VisiQuest_A problem solving

environment for scientific computing and visualization.pdf

[5] Synopsis Visual Programming Tool. [Online]. Available:

http://www.codemorphis.com/

[6] Ariane Data flow visual programming environment. [Online].

Available: https://clouard.users.greyc.fr/Ariane/.

[7] M. Young, D. Argiro, and S. Kubica, “Cantata: visual programming

environment for the Khoros system,” ACM SIGGRAPH Computer

Graphics, vol. 29, no. 2, pp. 22-24, May 1995.

[8] Microsoft Windows Presentation Foundation. [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms754130.aspx

Hari Om Prakash is presently working in the

Systems Engineering Group, ADRIN, Department

of Space, as Scientist/Engineer “SC” and involved

in developing applications in the field of network

security and secure programming language design

and implementation field. He can be contacted at

hariom@adrin.res.in.

R. Phani Bhushan is presently working as Section

Head, Data Security Section under the Systems

Engineering Group, ADRIN, Department of Space.

He is leading a group involved in development

activities in both host based and network based

security. He can be contacted at

phani@adrin.res.in.

Geeta Varadan is presently Director, ADRIN,

Department of Space. She can be contacted at

director@adrin.res.in.

S. Venkataraman is presently Group Director, ADRIN, Department of

Space. He is heading System Engineering Group at ADRIN. He can be

contacted at kalka@adrin.res.in.

260

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

