
  
Abstract—A prototype simulation-optimization system called 

AnyPLOS, which couples an Artificial Neural Network (ANN) 
based simulation model with a genetic algorithm optimization 
model, is presented. AnyPLOS is designed to discover value of 
effective input parameters of a production line so that all 
required quality control tests on the output product is satisfied. 
First an ANN was trained and tested to provide an acceptable 
level of accuracy in prediction of production line outputs, and 
then it was coupled with a GA optimization module to find 
desired solutions. A real world case study, in Erish Khodro 
manufacturing company, was set up and the foam production 
process input parameters were optimized so that the produced 
samples satisfied quality requirements. In order to verify the 
results, discovered solutions were used to produce real foam 
samples in the production line. After that, quality control tests 
were performed on samples. Quality test results were, as 
predicted by ANN, within the desired range. In order to 
estimate the performance of the trained ANN, experimental 
observations were compared to values which were predicted by 
ANN. A convincing correlation was found between ANN 
predictions and experimental values. 

 
 

Index Terms—AnyPLOS, genetic algorithm, neural network, 
cold foam, production line.  
 

I. INTRODUCTION 
Estimating various quality aspects of outputs of a 

production line has always been a challenge in process based 
industries. Produced samples are supposed to satisfy specific 
quality control criteria. That is when arbitrary or unexpected 
alterations in raw materials or in other effective input 
parameters influence quality aspects of the output product. 

The knowledge to predict the resulting outcome as a 
function of changes in input parameters is an absolutely 
valuable tool in order to look for a set of input parameters 
which result in the production of outputs with acceptable or 
desirable quality aspects. 

‘Trial and Error’ procedure has widely been used as a 
traditional method to manufacture a product which meets all 
quality control requirements. However, despite the high costs 
and time consumption, this method does not often provide 
reliable solutions. Procedural-based production lines sustain 
significant costs during ‘Trial and Error’ procedure. That is 
when a modern simulation-optimization system may provide 
reliable solutions and eventually reduce the production costs, 
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time consumption or wastes. 
This paper describes a prototype simulation-optimization 

system called AnyPLOS 1 . Coupling an Artificial Neural 
Network (ANN) based simulation model with a Genetic 
Algorithm (GA) optimization model is used to find effective 
input parameters which result in an output product which 
satisfies all pre-specified quality control tests. 

In the following sections, AnyPLOS procedure is 
described first, then the simulation and optimization modules 
are thoroughly discussed and finally a real-world case study 
of AnyPLOS application in a cold foam production line is 
illustrated. Future works section is also presented to explain 
ideas for AnyPLOS future developments.  

Two acronyms which appear in this paper many times are 
IP and QA. An IP, standing for Input Parameter, refers to an 
adjustable parameter which if changed, will influence quality 
aspects of the output product of a production line. QA, 
standing for Quality Aspect, is a quality corresponding value 
which is determined for a product by quality control 
experiments. 

AnyPLOS process initiates by determining IPs and QAs of 
a production line. First, it should be explicitly determined 
that which QAs of the output product is about to be 
controlled by quality control tests. Then a holistic 
investigation is needed to detect which parameters (IPs) may 
influence those QAs. Once detected, IP and QA arrays are 
defined. 

Next step, as it will be thoroughly discussed in simulation 
section, is to use the production line to product some samples 
and perform quality control tests on the outputs. Once the 
simulation module is proved to provide an acceptable level of 
accuracy in prediction of production line outputs, it will be 
coupled with a GA optimization module. Optimization 
module triggers a heuristic search procedure to locate 
optimum IP arrays in the decision space. Solutions found 
after the search procedure, are IP arrays which if be applied 
to the production line, QAs of the output product shall satisfy 
quality control tests. Although all achieved solutions are 
supposed to result in the production of an acceptable product, 
however they may have different characteristics. Some may 
reduce production costs and some may decrease time 
consumption or wastes. Manager may select the solution 
which is more close to his/her production policies. 

 

II. METHODOLOGY 

A. Simulation 
A simulation module is required to accurately estimate the 
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QA array of an output product which is manufactured based 
on a specific IP array. A particular simulation method such as 
discrete event simulation, or a combination of several 
modeling approaches may be most appropriate dealing with 
different production lines. However, AnyPLOS is supposed 
to be a procedure-independent system, targeting various 
types of production lines. So the simulation module should 
capture correlations between variables of a production line 
that analytically relate. An Artificial Neural Network (ANN) 
is proved to be able to derive meaning from complex and 
even fairly inaccurate data. ANN is used to extract patterns 
and identify trends that are too complicated to be found by 
either humans or regular computer procedures [1]. A well 
trained ANN can be considered as an expert a production line, 
who based on years of experiences, initiatively knows the 
answer for any what if question. 

ANNs have been used to solve numerous problems 
associated with manufacturing operations. Application of 
ANN in manufacturing system design [2]-[6], manufacturing 
process control [7], robot scheduling [8], industrial pattern 
recognition [9], and manufacturing operational decision [10] 
is reported. 

A back-propagation ANN to estimate the QA array 
corresponding to any IP array is developed. The ANN 
consists of an input layer (IP array), an output layer (QA 
array) and adjustable number of intervening layers. These 
also called “hidden layers” can capture the non-linear 
relationship between variables. 

The ANN should be trained with experiments so that a 
sufficient level of accuracy is obtained. Every training 
experiment is a distinctive sample created in a production line 
including both IP array and the resulting QA array for that 
sample. To create an experiment, a set of IPs is defined. 
Based on that IP arrays, samples are manufactured and then 
quality control tests are conducted to produce QA arrays for 
experiments. 

DOE (Design Of Experiments), a sampling method which 
is highly recommended by quality management standards 
such as QS9000, is employed to produce the minimum 
number of instances. DOE provides an essential but certainly 
not enough number of experiments. More experiments are 
required to probe the decision space of the problem and 
improve training of the ANN. Having gathered all 
experiments, the ANN is trained employing the 
back-propagation training algorithm which is best-known 
supervised learning approach for ANNs [11].  

B. Optimization 
It should be noted that production line models are often 

known as non-convex, non-linear programming problems. In 
the case of highly non-linear optimization problems where 
the convexity of the objective function and feasible region 
cannot be ensured, classical optimization techniques are not 
guaranteed to find solutions. Furthermore, being 
gradient-based, classical optimization techniques consume 
much CPU time computing derivatives. In recent years, 
researchers employed heuristic optimization techniques that 
do not require computing derivatives and are proven to be 
more efficient in converging to solutions. GA, developed by 
Holland in 1973 [12], is considered to be a powerful and 

robust heuristic search algorithm for non-linear optimization 
of non-linear and non-convex problems. GA uses natural 
rules of survival in pursuit of the ideas of adaptation to look 
for optimal solutions of complex problems. GA is able to 
optimize discrete or continuous variables, escape from local 
optima, search a broad area of the decision space, and address 
a large number of variables without requiring objective 
function derivative computations. 

GA commences using an initial population of individuals 
(called chromosome) including parameters (called gene) 
which are randomly selected within the range of decision 
parameters. In this study, a chromosome, as a potential 
solution of the problem, stands for an IP array and includes 
genes which correspond IPs. Genes are decision parameters 
which are to be optimized. In every evolutionary step (called 
generation), the chromosomes in the current population are 
evaluated according to the objective function. This is when 
the ANN based simulation model is called to estimate the QA 
array for the chromosome and based on that, objective 
function for every chromosome in the population is 
determined. To form the next generation, chromosomes are 
reproduced from the old generations by genetic operators 
(selection, crossover, and mutation). 

During the reproduction phase, individuals with the best 
fitness values in any generation (elites) are guaranteed to 
continue to exist in the next generation. Simulated Binary 
Crossover method developed by Deb and Agrawal [13] is 
used as crossover operator. The real-coded GA evolution is 
continued until a stopping criterion is met. Predefined 
stopping criteria include maximum number of generations, 
time limit, and stall generations. GA flowchart is 
demonstrated in Fig. 1. 

The objective function (1) is based on minimizing the 
violation of constraints. Model constraints include IPv and 
QAv which are sum of IPs and QAs violations from the 
assigned ranges of variation respectively. In other words, IPs 
and QAs values are checked to be between a minimum and a 
maximum value. If any IP or QA has a value outside its 
range, then the amount of error will be added to IPv (2) or 
QAv (3) respectively and finally these two values together 
form the objective function of the chromosome. 
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In above equations, IPn and QAn are number of IPs and 

QAs in a production line, respectively. Equation (2) states 
that any IP may vary within a pre-specified range which is 
determined by user. IP ranges may be defined considering 
economic features. For example, if a manager thinks that an 
IP directly affects the cost of production, he/she can manually 
limit the IP to small values so AnyPLOS looks for feasible 
solutions which excel in quality control tests and yet limits 
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the specific IP within the desired range. Equation (3) 
describes limitations applied to QAs of the production line 
output. These criteria may be determined so that the quality 
control requirements are satisfied. However they may be 
adjusted to look for desired solutions which may result in less 
production costs, less time consumption, or less wastes. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Flowchart of the optimization module. 

 
Initiating from different random populations, GA is run 

multiple times to find solutions. GA is most likely to find 
solutions, only if the user-defined criteria for IPs and QAs are 
determined so that possible solutions inside the decision 
space actually exist. After multiple runs, a set of solutions, 
each provide IPs supposed to result to an acceptable output 
product, is built. 

The proposed Simulation-Optimization model performs an 
iterative and heuristic procedure in which the GA 
optimization model calls the simulation model to evaluate the 
objective function of each solution. The search process 
continues until one of predetermined stopping criteria is 
reached. 

 

III. CASE STUDY 
In this section, a recent application of AnyPLOS in foam 

production industry is illustrated.  
Erish Khodro manufacturing company, located in Qazvin 

industrial zone in Iran, produces cold cure seating foam 
which has a wide use in car seats in automotive industry. The 
foam production line benefits from technology needed for 
producing dual hardness foams. 

QAs of the produced foam are Compression Set, Tensile 
Strength, Elongation, Tear, and Compression Load 
Deflection (CLD). These five QA are inspected by quality 
control tests and the results are compared with corresponding 
allowed ranges. 

Compression set percent represents a measure of the 
permanent deformation of foam after being compressed 
between two rigid plates for a specific time and temperature 
condition. Maximum allowed value of compression set result 
is 15%. Tensile strength measures the force required to break 
a specific area of foam as it is pulled apart. Tensile strength 
experiment is passed if result is not less than 70 Kpa. The 
extent to which the foam can be stretched before it breaks is 
measured by elongation and is expressed as a percentage of 
original length of the foam. Results greater than 90% are 
acceptable in this test. Tear strength measures of the force 

required to continue a tear in foam after the appearance of a 
split. Minimum allowed value of tear strength result is 140 
N/m.  CLD is a test method to determine load bearing 
capacity and is expressed in force per area at a given percent 
deflection of the foam. In this case study, CLD values 
between 8.7 Kpa and 10.3 Kpa are acceptable. These five 
measures form the QA array of this production line as 
{Compression set, Tensile, Elongation, Tear, CLD} 

Effective IPs of the production line which are believed to 
influence the aforementioned QAs of the produced foam 
were found to be: mixture density (D) in Kg/m3, ratio-percent 
of isocyanates to polyols amount in mixture (R), polyols’s 
mixing pressure (Pp) in bar, isocyanates’s mixing pressure 
(Pi) in bar, and curing time of the mixture (T) in minutes. So 
an IP array is considered as {D , R , Pp , Pi , T}. IPs may 
change within specific ranges which are determined by 
experts of foam production. IPs ranges along with quality 
criteria for QAs are presented in Table I. 
 

TABLE I: ACCEPTABLE RANGES 

Acceptable Ranges of IPs QAs Criteria 
Min IP Max Min QA Max 
42.6 D (Kg/m3) 61.57 0% Compression set 15% 
48 R (%) 70 70 Tensile (Kpa) - 

100 Pp (bar) 185 90% Elongation - 
100 Pi (bar) 160 140 Tear (N/m) - 

3 T (minute) 4.5 8.7 CLD (Kpa) 10.3 

 
DOE, as discussed in simulation section, considers all 

possible combinations of high and low levels for each IP and 
generates 2IPn samples of experiment (IPn is number of IPs). 
In this case, 32 samples are produces by DOE (2IPn=25). 8 
more instances of most commonly applied IPs in the history 
of the production line were added to the list of experiments to 
improve the training of the ANN. All of the 40 samples were 
requested to be produced in the production line. Quality 
control tests were performed on output foams. QA array of 
each IP array was gathered based on experimental results. 

ANN was trained by IP arrays as input and QA arrays as 
output. Fig. 1 shows the topology of the ANN which is 
designed by try and error. Back-propagation training 
procedure of ANN continued until the coefficient of 
determination for learning data reached to 0.98. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Topology of the ANN. 
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Results show that the ANN estimates every QA of foam 
samples in an acceptable level of accuracy. So as the 
simulation module, the trained ANN is ready to be coupled 
with the GA optimization module. As discussed in 
optimization section, objective function of GA is defined to 
be a sum of violations amount in constrains. Zero value of the 
objective function, which is considered as the optimum 
condition, only occurs when all constraints are regarded. An 
optimum solution refers to a condition when all IPs and QAs 
values are within their predefined range. It means that the 
optimization module has found an acceptable IP array which 
the simulation module estimates the corresponding QAs to be 
in the predefined range. Based on (1) to (3), and ranges 
defined in table 1, objective function of the optimization 
problem is formulated. Multiple runs were performed and 
several solutions with zero value of objective function were 
achieved. Fig. 3 presents progressive evolution of the 
objective function for one of the optimum solutions. With a 
population size of 20, nearly 80 generations were required to 
obtain a zero value objective function.  
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Fig. 3. Progressive evolution of the objective function for a sample solution. 

 
Solutions were investigated and four distinguish solutions, 

which the other solutions were barely different from them, 
were detected. These four solutions which are presented in 
Table II, could be considered as key states while the other 
solutions are found to be similar to them. 

 
TABLE II: FOUR MAIN OPTIMUM SOLUTIONS 

IP Solution #1 Solution #2 Solution #3 Solution #4 
D (Kg/m3) 58.010 59.337 56.700 52.529 
R (%) 128.103 125.047 131.283 101.422 
Pp (bar) 182.397 163.544 142.573 182.199 
Pi (bar) 54.026 51.025 54.765 58.768 
T (minute) 4.014 3.396 3.885 3.080 

 
The four IP sets were used to produce four foam samples in 

the production line. Quality control tests were also performed 
on the four produced foam samples to determine 
experimental QA arrays. Experimental results, which are 
presented in “Obs” columns of Table III, show that all four 
foam samples are acceptable. 
 

TABLE III: EXPERIMENTAL OBSERVATION VERSUS ANN PRICITION 

 Solution #1 Solution #2 Solution #3 Solution #4
 Obs1 Prd2 Obs Prd Obs Prd Obs Prd 

Compression set (%)13.4 13.21 13.0 13.55 13.3 13.56 14.7 14.67 
Tensile (Kpa) 149 151.87 156 161.81 161 165.4 157 156.73
Elongation 116 116.56 120 121.76 117 118.09 118 117.34
Tear (N/m) 179 185.79 165 164.40 190 186.11 174 175.09
CLD (Kpa) 9.63 9.45 9.1 9.35 10.2 9.86 8.61 9.03 

1-Observed    2-Predicated 

In order to verify the results, experimental observations 
were compared to QA arrays which were predicted by ANN. 
Fig. 4 to Fig. 8 present the correlation between experimental 
and predicted values of compression set, tensile, elongation, 
tear, and CLD tests. 
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Fig. 4. Correlation between predicted and observed values of compression 

set test. 
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Fig. 5. Correlation between predicted and observed values of tensile test. 
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Fig. 6. Correlation between predicted and observed values of elongation test. 
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Fig. 7. Correlation between predicted and observed values of tear test. 
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Fig. 8. Correlation between predicted and observed values of CLD test. 
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A convincing correlation is found between observed and 
ANN predicted QAs. All four foam samples which were 
produced with IPs found by AnyPLOS (Table 2), satisfied 
quality control tests. 

 

IV. FUTURE WORKS 
The acquired set of solutions from the optimization step 

may satisfy demands of some managers as they may only 
look for IPs which result in productions with acceptable QAs. 
But some of those solutions will certainly reduce production 
costs, time consumption and wastes. AnyPLOS can help 
managers to wisely discriminate between the acquired IP 
arrays in order to find one which best fits expectations. IPs 
which affect production costs, time consumption, or wastes 
can be selected as attributes to make such a decision. A 
multiple attribute decision making algorithm may be added to 
the prototype of AnyPLOS for this purpose. 

Another modification to the prototype of AnyPLOS may 
be applied in the optimization module. Cost functions may be 
considered as objective function to be minimized and IPs 
ranges may be thought as model constraints. Such a 
configuration requires GA to solely look for a global 
optimum solution. That unique solution is guaranteed to pass 
all quality tests while production costs are kept as low as 
possible. This modification to AnyPLOS is possible only if 
cost equations are extracted from the production line by a 
holistic commercial investigation on the production process. 
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