

Abstract—A component based Architecture is proposed to

meet the requirements of the software development

architecture of naval simulation training standard console. The

Standard Element Database (SDD) and management system,

the Foundation Classes Library (FCL), the Standard Object

Model Development Tool(S-OMDT) are developed which make

developing simpler and rapid.

Index Terms—Simulation training, standard console,

software development architecture.

I. INTRODUCTION

To make simulation system standard, the Defense

Modeling and Simulation Office (DMSO) proposed the

High level Architecture (HLA) as the distribute simulation

standard [1]. New simulation systems are developed base on

HLA. But different systems employing different RTI cannot

be connected with each other because the RTI are not

compatible, even systems using same RTI are not

compatible too, the reason we will represent in the following

section.

To make the development of naval simulation training

standard console simpler, some open source simulation

engines are developed, such as the Combat Simulator

Project and Delta3D. The Combat Simulator Project is a

flight simulator engine and Delta3D is game engine

developed by Naval Postgraduate School (NPS) [2], [3].

These complicated engines supporting 3D scene are not easy

to learn and are not very suitable for console simulator

mainly composed of instruments. When developing virtual

instrument, many programmers employ GLStudio, an useful

software with friendly and convenient tool. However, it is

not free and gives nothing except virtual panel.

This paper focuses on developing naval simulation

training standard console, analyses the characteristics and

requirements of console, and proposes a solution based on

component technology, which is named as Standard Console

Simulator Development Architecture (SCSDA).The design

of SCSDA is as followings.

II. FOUNDATION CLASS LIBRARY (FCL)

We can list the general problems programmers encounter

when building console simulators, scene of instrument

panels, GUI, modeling, database manager, network, file IO,

serial port communication, sound, memory, threads

Manuscript received December 10, 2012; revised February 20, 2013.

The authors are with the Dalian Naval Academy/Simulation Training

Center, Dalian, China (e-mail: xujing2010@163.com,

xioneering@yahoo.com.cn, 13555965759@139.com).

synchronization. To meet these problems, SCSDA develops

a Foundation Classes library (FCL), some classes of which

are from open source software, such as CEGUI, OpenAL,

Xerces et al., See Fig. 1.

A. CBasePart

The CBasePart class is responsible for simulating visible

instruments on consoles, which include switch, knob,

indicator, led, panel, keyboard and screen. These object-

oriented classes are easy to use and respond well to

messages from outside. With these classes, programmers

can build the virtual parts effectively in a short time. When

necessary, programmers can also custom self-defined part

class derived from CBasepart or other part classes to

simulate special instruments.

B. CBaseGraph

For rendering, SCSDA designs the CBaseGraph class. It

derives some classes, CBaseGDI, CBaseGUI, CBaseGL and

CBaseDX, adopting different technology, such as GDI,

GUI, OpenGL and Direct3D. They are used as individual’s

will.

C. CBaseAudio

SCSDA’s audio is handled through the CBaseAudio class

which consists of two classes, one based on the Open Audio

Library (OpenAL) and one based on DirectSound.

CBaseAudio consists of a number of functions that allow a

programmer to specify the objects and operations in

producing high-quality audio output, specifically

multichannel output of 3-D arrangements of sound sources

around a listener. It can handle sound source directivity and

distance-related attenuation and Doppler effects, as well as

environmental effects such as reflection, obstruction,

transmission, reverberation.

D. CBasePart

SCSDA uses the CBaseDataManager class to manage

data in simulator system. Three derived classes from it are

CBaseINI, CBaseXML and CBaseComm. CBaseINI

handles .ini files or binary files with self-defined format.

The XML files are handled through CBaseXML which is

derived from Xerces. CBaseComm, which performs data

communication, derives three classes, CBaseSocket,

CBaseCom and CBaseShareMem. Developers can use them

to handle TCP/IP programming, serial communication and

memory sharing.

E. CBaseDB

CBaseDB performs functions of database management,

including connection, query, modifying, appending and etc.

Research on the Software Development Architecture of

Naval Simulation Training Standard Console

Xu Jing, Xu Ming, and Li Tie

International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013

136DOI: 10.7763/IJMO.2013.V3.253

mailto:xujing2010@163.com

F. CBaseModel

There are many models employed in military console,

such as filtering models, firing models, movement models,

flow controlling models and other special models. SCSDA

uses CBaseModel to manage them.

CBaseSwitch

CBaseIndicator

CBasePanel

CBaseScreen

CBaseKeyboard

CBaseTouchScreen

CBaseDisplayScreen

CBaseGraph

CBaseSound

CBaseSocket

CBaseCOM

CBaseModel

CBaseGL

CBaseDX

CBaseDataComm

CBaseDB

CBasePart

User-Defined Parts

User-Defined Comms

CBaseGDI

User Models

CBaseShareMem

CBaseDataDispose

CBaseDataXML

CBaseDataINI

CBaseSwitchKnob

CBaseSwitchButton

CBaseLED CBaseGUI

Fig. 1. Foundation classes.

+SendMsg()
+ProcessMsg()
+AddMsgQueue()
+RegisterPart()
+PreDraw()
+Draw()
+PostDraw()
+AddChild()
+RemoveChild()
+SetParent()
+GetPartName()

-ParentPart
-ChildPartList
-type

PartComponent

CBaseGraph

+SendMsg()
+ProcessMsg()
+AddMsgQueue()
+CreateComponent()
+AddComponent()
+GetComponentType()
+RemoveComponent()
+DeleteComponent()
+SetTimer()
+KillTimer()
+SaveSimState()
+LoadSimState()

-ComponentsList

ComponetManager

+AddParameter()
+GetParameter()
+RemoveParameter()
+GetParameterNum()
+GetMsgType()

-MsgType
-ParameterList
-SenderID
-RecipientID
-TimeStamp
-SenderType
-RecipientType

Message

-name
-category
-description
-id

MessageType

+GetType()
+ToStream()
+FromStream()

-m_DataType

MessageParameter

+ReadChar()
+WriteChar()
+ReadDouble()
+WriteDouble()
+...()

-m_byteStream

DataStream

+RegisterMsgType()
+UnRegisterMsgType()
+CreateMsg()
+IsMsgTypeSupported()

-m_name
-discription
-MsgObjectFactory

MessageFactory

CBaseSound

+SendMsg()
+ProcessMsg()
+AddMsgQueue()
+RegisterModel()
+GetChild()
+GetParent()
+GetModelName()

-type
-ChildModelList
-ParentModel

ModelComponent

+SendMsg()
+ProcessMsg()
+AddMsgQueue()
+RegisterService()
+GetChild()
+GetParent()
+GetServiceName()

-ParentService
-ChildServiceList
-type

ServiceComponent

CBaseDataComm

CBaseDataINI

CBaseDataXML

CBaseDB

-name
-description

Component

+SendMsg()
+ProcessMsg()
+AddHotArea()
+GetHotArea()
+DeleteHotArea()
+EnableHotRect()
+IsInHotArea()
+PreDraw()
+Draw()
+PostDraw()
+AddState()
+DelState()
+GetState()
+SetState()

-m_HotRectArray
-m_HotNum
-m_StateArray
-m_StateNum
-m_CurStateIndex
-m_CurRect

CBasePart

CBaseModel

0..*
1

Fig. 2. SCSDA classes diagram.

International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013

137

A:PartComponentApplication ComponentManager B:ServerComponent C:ModelComponent

2:CreateManager

4:CreatePart

7:CreateComponent

6:Register Msg

12:Register Msg

17:ProcessMsg

1:Config

15:InputMessage 16:SendMsg

14:Run

19:DispatchMsg

20:SendMsg

22:invokeModel

21:ProcessMsg

23:Return Msg
24:SendMsg

25:SendMsg

26:ProcessMsg

18:ReturnMsg

5:Config

8:Config

3:Config

13:ReturnManager

SimInfo XML
message
component

ComponentInfo XML
SubscribeMessage
PublishMessage

AppInfo XML
WindowsInfo
AppInfo

9:CreateComponet

10:Config11:Register Msg

Fig. 3. Example of application sequence diagram.

III. COMPONENT MANAGER AND COMPONENTS

Systems developed by SCSDA run as components and

component manager. Components consist of part, service

and model components. The three types of component are

responsible for different simulator functions; the Part

Components for visible instrument panels; the Model

Components for Modeling; the Service Components for

other services. The Component Manager is the core of the

systems developed by SCSDA; the glue that holds

everything in the systems together. It is responsible for

managing part components, service components and model

components, ensuring messaging and inter-object

communication, and directing component behavior. It

knows which components exist, what parts are interested in

which messages, and what models exist in the simulation.

Moreover, it is responsible for making sure messages get to

the interested components as well as handling low-level

events from the simulator system such as frame and pre-

frame events. The Fig. 2 class diagram shows the

architecture of both Component Manager and components.

The Fig. 3 sequence diagram illustrates the processes

between the Component Manager, its part components,

service components and model components.

IV. SIMULATOR SYSTEM XML FILES

SCSDA employs many config files when working. The

config files are flexible XML files shown a few in Fig. 3,

and here are more descriptions of the XML files. There are

four main types of XML files:

1) Application XML file, which is loaded when

application initializing, is responsible for recording

windows number, position, size, information of

component manager, et al.

2) Simulation system information XML file. The file

resembles FED file of HLA. It describes all

information of messages and components. The

Component Manager employs it to handle messages

and direct components behavior. The XML file

should be defined before building a simulator system,

and every component uses it to define component

information XML file, which will be described next.

3) Component information XML file is responsible for

information of subscribing and publishing messages,

parent and child component, as well as additional

XML files such as CEGUI XML files and parameter

XML files.

4) Message-FOM mapping XML file is a special file

used in HLA Components. It performs task of

converting local messages to HLA traffic. Therefore,

the HLA component can connect local simulator with

remote ones.

V. STANDARD DATA DATABASE (SDD)

Standard Data Database (SDD) is the core of SCSDA

architecture. It is impossible to develop standard simulators

without SDD. Data in SDD is defined according to

documents of military training simulator standards which

stipulate for all data in military simulators.

When developing some special simulators, developers

may not be able to find what they need in SDD. Some

Reserved Data (RD) is pre-defined in SDD consequently.

International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013

138

International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013

139

When SDD could not meet the requirement, developers use

these RD temporarily; of course, they need report these data

to the special institute. Therefore, the SDD will be updated

periodically.

VI. SDD MANAGEMENT SYSTEM (SMS)

STADA uses SDD Management System (SMS) to

manage the SDD. It is an independently subsystem of

SCSDA, responds for maintaining SDD, including

appending, enquiring, modifying, deleting, reporting, data

importing and exporting. On the other hand, SMS submits

application programming interfaces (API) of SDD.

VII. STANDARD OBJECT MODEL DEVELOPMENT TOOL

(S-OMDT)

SCSDA develops the Standard Object Model

Development Tool (S-OMDT) [4]- [6]. The standard data in

SDD can be imported into S-OMDT which can generate

standard FED file or XML file of FOM/SOM. Therefore,

members of federation, even of different federations, are

compatible with each other.

VIII. STANDARD COMPONENT WIZARD (SC-WIZARD)

Standard Component Wizard (SC-Wizard) is a tool by

which developers generate initial code of components. It can

generate standard C++ object-oriented classes which expose

interfaces shown in Fig. 2.

When developing a special component, HLA service

component, we employ the third party tool, FedWizard [6],

to generate HLA code framework based on FOM/SOM

created by S-OMDT. The HLA component connects

simulator with RTI software by message-FOM mapping

XML file.

IX. SCSDA’S ARCHITECTURE AND FLOW

In a word, The SDD and SMS are the core of SCSDA and

the base of S-OMDT. When developing, the SC-Wizard

creates components with standard interfaces at first; then

programmers develop components employing FCL. The Fig.

4 illustrates a high level relationship between SDD, SMS, S-

OMDT, SC-Wizard and FCL.

SC-Wizard

S-OMDT

SMS

Standard Simulator

SDD

FCL

Fig. 4. High level view of SCSDA.

X. CONCLUSION

This paper gives a description of solution of developing

standard simulator which is named SCSDA. It focuses on

standardization, compatibility and component of simulator;

develops some foundation classes to simplify programming;

builds standard data database and toolset to help system

compatible; employ component to make process of

development flexible. Therefore, SCSDA offers an

outstanding choice for naval simulation training standard

console developers. It could be used for other purposes

when new classes are adopted in FCL if desired.

REFERENCES

[1] S. White, “Using an HLA Maritime Combat System Simulation

Environment to Investigate Force and Coalition Interoperability,” in

Proc. 2002 European Simulation Interoperability Workshop,

Middlesex, UK, 2002.

[2] J. M. Nolan, “Games for training: Leveraging commercial off the

shelf multiplayer gaming software for infantry squad collective

training,” Naval Postgraduate School, 2005.

[3] P. Mcdowell, R. Darken, and E. J. Sullivan, “Delta3D: a complete

open source game and simulation engine for building military training

systems,” JDMS. 2006, vol. 3, no. 3, pp. 143-154.

[4] J. X. Gong, W. Zhong, J. Huang, X. G. Qiu, and K. D. Huang,

“Application of base object model in HLA’s simulations,” Journal of

System Simulation, vol. 18, suppl. 2, pp. 327-331, 2006.

[5] Q. Zhang, Q. J. Yin, and K. D. Huang, “A conceptual study of base

object model (BOM),” Journal of System Simulation, vol. 17, no. 7,

pp. 1667-1670, 2005.

[6] J. Yin, J. G. Hao, and K. D. Huang, “Research and implementation of

automatically generating federate software framework from high level

architecture object model,” Journal of System Simulation, vol. 19, no.

6, pp. 718-722, 2002,

Xu Jing is a professor, he was born in Wuxi, Jiangsu

Province, China on March 15, 1969. He received the

Ph.D. degrees in computer application from Dalian

University of Technology in 2002. Since 1994 he was

employed by the Dalian Naval Academy, and he has

worked in the areas of modeling and simulation of naval

operation during his years in Dalian Naval Academy, he

was appointed head of the simulation training center in

2006. He has published over 50 articles in his research areas.

Xu Ming is a lecturer, he was born in Wuxi, Jiangsu Province, China on

June 12, 1980. He received the M.A. degrees in computer engineering

Dalian University of Technology in 2011. Since 2008 he was employed by

the Dalian Naval Academy, and he has worked in the areas of modeling and

simulation of naval operation during his years in Dalian Naval Academy.

He has published over 10 articles in his research areas.

Li Tie is a lecturer, he was born in Miro, Hunan province, China on Dec. 5,

1974. He received the Ph.D. degrees in computer engineering from

Northwestern Polytechnical University in 2012. Since 2001 he was

employed by the Dalian Naval Academy, and he has worked in the areas of

modeling and simulation of naval operation during his years in Dalian

Naval Academy. He has published over 30 articles in his research areas.

