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Abstract—This paper reports on the development of a 

minimum cost design model and its application for obtaining 

economic designs for reinforced High Strength Concrete (HSC) 

T-sections in bending under ultimate limit state conditions. Cost 

objective functions, behavior constraints including material 

nonlinearities of steel and HSC, conditions on strain 

compatibility in steel and concrete as well as geometric design 

constraints are derived and implemented within the 

Generalized Reduced Gradient optimization algorithm. 

Particular attention is paid to problem formulation, solution 

behavior and economic considerations. 

 
Index Terms—Eurocode2 (EC-2), generalized reduced 

gradient algorithm, cost optimization, high strength concrete 

(HSC) T-sections, nonlinear programming, ultimate limit state 

(ULS).  

 

I. INTRODUCTION 

Structural elements with T shaped -sections represent 

major components in various applications involving building 

and bridge structures. For repeated and large scale use of 

these components, as may be the case for precast reinforced 

High Strength Concrete (HSC) component production, 

special consideration should be devoted to their optimal 

design in order to make effective use of construction 

materials and ensure overall cost reduction of the project. By 

utilizing HSC [1], [2], the cross-section dimensions of the 

elements can be reduced. Consequently, less concrete, less 

formwork and less amount of steel reinforcement are needed. 

The net result is that the least expensive T-beam can be 

achieved with the smallest concrete cross-section, the least 

amount of reinforcement and the highest available concrete 

strength. 

At the present time, the cost of HSC for concrete strength 

class C80/95 is about 1.50 higher than that of ordinary 

concrete of strength class C30/37. For HSC with higher 

classes such as C90/105, the over cost is of the order of 1.80. 

However, this over cost is rather negligible as compared to 

the economic advantages achieved thanks to the reduction in 

the quantities of construction materials to be used. This, in 

turn, will result in weight reduction and hence lighter and less 

costly foundations. 

Another important aspect in developing a cost effective 
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design approach is the use of a suitable optimization 

algorithm. Optimization techniques can be globally divided 

into three main categories: mathematical programming 

techniques [3], [4], methods based on optimality criteria [5] 

and heuristic search algorithms [6], [7]. 

In this paper, a non-linear mathematical programming 

technique based on the Generalized Reduced Gradient 

optimization algorithm is used. Numerical example are 

presented to illustrate the applicability of the minimum cost 

design model, solution behavior and economic 

considerations. Results are confronted to design solutions 

derived from conventional design office methods obtained in 

accordance with Eurocode 2 design code (EC2) [8] to 

evaluate the performance of the cost model. 

 

 
 

II. PROBLEM STATEMENT 

To obtain the design variables b, bw, d, hf, the amount of 

steel As and the relative depth of compressive concrete zone 

α (cf. Fig. 1 and Ref.[8]), given that: 

Beam span: L  

Ultimate bending moment capacity including self weight: 

MEd  

Ultimate shear capacity including self weight: VEd  

Characteristic compressive cylinder strength of HSC at 28 

days: fck; with 50 ≤ fck ≤ 90MPa  

Design strength factor: η =1.0-(fck-50)/200  

Compressive zone depth factor: λ=0.8-(fck-50)/400  

Strain at maximum stress for (σc-εc) power law; 

εc2(‰)=2.0+0.0085(fck-50)0.53  

Ultimate strain of compressive concrete for (σc-εc); 

εcu2(‰)=2.6+35[(90-fck)/100]4  

Factor; n=1.4+23.4[(90-fck)/100]4  
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Design yield strength of steel reinforcement: fyd=fyk/γs  

Partial safety factor: s  

Characteristic elastic limit for steel reinforcement: fyk  

Young’s elastic modulus: Es  

Total cost per unit length of HSC T-beam: C  

Unit cost of reinforcing steel: Cs  

Unit cost of HSC concrete: Cc  

Unit cost of formwork: Cf 

 

III. MINIMUM COST DESIGN MODEL OF HSC T-BEAM  

In developing a minimum cost design model [9], it is 

necessary to include in the model, design constraints. For 

illustrative purposes, the design constraints will be herein 

defined in accordance with the EC2 design code 

specifications. Thus and without loss of generality, the 

formulation of the minimum cost design of HSC T-beams 

under ultimate loads can be mathematically stated as follows: 

Find the design variables b, bw, d, hf, As, and α that 

minimize the total cost C per unit length of HSC T-beam such 

that: 

s f
wd w f s s

c c c

C CC
 = b + b- b h + A + b+ d + d .

C C C
( ) ( ) [( 2( )]  (1) 

Subject to the following constraints: 

A. Behavior Constraints: 
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B. Conditions on Strain Compatibility in Steel and 

Concrete: 

 
E
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S
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(Optimal use of steel requires that strains in steel must be 

limited to plastic region at the ULS) 

lim501  λα) ,-λα(                         (7) 

 

(Compression reinforcement is not required) 

C. Geometric Design Variables Constraints Including 

Pre-Design Rules of Current Practice: 

h  L / 16                                      (8) 

d / h = 0.90                                   (9) 

0.20  bw / d  0.40                            (10) 

(b-bw) / 2  L / 10                           (11) 

b/hf  8                                 (12) 

 hf  hmin                                                       (13)  

In the above relationships, the following definitions are 

used: 

μlimit: limit value of reduced moment  

hmin: minimum depth of flange 

In equations (2) and (3) above, it is assumed that the 

neutral axis position is under the beam flange which ensures 

that the section is behaving as the T-beam section shown in 

Fig. 1(a). 

 

IV. SOLUTION METHODOLOGY 

The objective function Eq.(1) and the constraints 

equations, Eq.(2) through Eq.(13), together form a nonlinear 

optimization problem. The reasons for the nonlinearity of this 

optimization problem are essentially due to the expressions 

for the cross sectional area, bending moment capacity and 

other constraints equations as well as the requirement to 

update iteratively the self weight of the T-beam, both in the 

constraints functions and the objective function. Both the 

objective function and the constraint functions are nonlinear 

in terms of the design variables.  

In order to solve this nonlinear optimization problem, the 

Generalized Reduced Gradient method [4] is used as it is 

widely recognized as an efficient method for solving a 

relatively wide class of nonlinear optimization problems. A 

brief summary of the solution methodology is presented in 

the Appendix. Further details can also be found in [10], [11]. 

 

V. NUMERICAL RESULTS AND DISCUSSION 

Typical design examples are now given, illustrating the 

performance of the minimum cost design model. Particular 

attention is paid to solution behavior and economic 

considerations. The objectives of this application test are: 

1) to evaluate the performance of the minimum cost design 

model 

2) to examine the characteristics of the solution in order to 

identify the binding and the nonbinding constraints, 

3) to provide minimum cost design solutions that can be 

used as a basis for comparisons in future investigations. 

The optimal solutions are compared to the standard design 

solutions obtained in accordance with EC-2 design code. The 

results in terms of the corresponding gains are presented in 

tabular form. Increase in cost saving due to the requirement 

to update the cross section dimensions with new self weight 

of the optimized beams, is also investigated. 

It should be noted that the solution vector of the above 
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problem cannot be considered as the final solution of the 

minimum cost design problem. As a matter of fact, because 

of the requirement to update the geometric dimensions of the 

section with the new self weight of the optimized beam, the 

degree of nonlinearity of the resulting optimization problem 

enhances further. The final optimal solution is thus obtained 

in two phases: 

Phase 1 is concerned with the determination of the optimal 

solution using the initial loading parameters (i.e. with initial 

self weight corresponding to the starting solution). 

Phase 2 is concerned with the requirement to update the 

self weight of the beam (both in the constraints functions and 

the objective function) with the geometric dimensions of the 

optimized section obtained in phase 1. The modified forces 

due to the new self weight are computed, the new dimensions 

of the beam are optimized and the process continued until 

convergence is achieved. In the present example, the optimal 

solution vector is reached after 3 cycles of iteration only. 

A. Comparison between the HSC Optimal and Standard 

Design Solutions 

The solution vectors of design variables including the 

geometric dimensions of the T-beam cross section and the 

area of tension reinforcement as obtained from the 

application of standard design procedure and the proposed 

approach are shown in Table I. 

 
TABLE I: COMPARISON BETWEEN HSC CLASSICAL DESIGN SOLUTION AND 

OPTIMAL COST DESIGN  SOLUTION EXCLUDING OR INCLUDING SELF 

WEIGHT EFFECTS (L=29M; MED =8MNM; VED=3MN; HSC GRADE C80/95; 

GRADE OF STEEL S500; CS/CC=25 FOR HSC; CF/CC=0; PMIN =0.25%; PMAX 

=4%). 

HSC Classical 

solution 

HSC Optimal 

solution 

HSC Optimal 

solution including 

self weight effects 

b(m)           1.00 0.80 0.80 

bw(m)          0.40 0.32 0.30 

h(m)           1.70 1.80 1.80 

d(m)           1.53 1.62 1.62 

hf(m)          0.12 0.10 0.10 

AS(m
2)      126x10-4 122 x10-4 114x10-4 

α                0.159 0.236 0.214 

C / Cc     0.999773 0.876514 0.858287 

 

From the above results, it is clearly seen that the relative 

depth of the compressive concrete zone associated with the 

optimal solution is 48% larger than that given by the classical 

solution, thus leading to a much better use of the concrete. It 

is also seen from the values of the relative costs C/Cc 

associated with the classical and optimal solutions, that a 

significant cost saving of the order of 14% can be obtained by 

using the proposed formulation. Note also that this cost 

saving can be increased up to 16% when comparing the 

standard design solution to the HSC optimal design solution 

including self weight effects. 

B. Behavior of Minimum Cost Design Solution 

A study of the inequality constraints indicated that the 

design constraints of the beam were all non binding except 

for the behavior constraints associated with ultimate bending 

moment capacity Eq.(2) ; the geometric design constraints 

Eq.(8); Eq.(10); Eq.(12); and Eq.(13). The values of the 

geometric design variables bw (web width), hf (flange depth) 

and h (total depth) are all on the specified lower limit values. 

In order to further illustrate the variability of optimal 

solutions with unit cost ratios Cs/Cc , the optimal solutions has 

also been computed for various ratios Cs/Cc = 13; 25; 36; 70; 

100; 130; 160; 200. 

The overall cost reduction achieved on the T-beam for a 

given unit cost ratio Cs/Cc, can be measured from the 

corresponding relative gain (in percent) defined as follows: 

classical optimal

classical

C  - C
Gain in percent (%)    100

C
        (14) 

The relative gains can be determined for the various values 

of the unit cost ratios. The corresponding results are reported 

in Table II and illustrated graphically in Fig. 2. for HSC class 

C80/95. 

 
TABLE II: VARIATION OF RELATIVE GAIN IN PERCENT (%) VERSUS UNIT 

COST RATIO CS/CC OF CONSTRUCTION MATERIALS. 

Cs/Cc 13 25 36 70 100 130 160 200 

Gain in percent(%) 16 14 13 10 10 12 14 18 

 

 
It can be observed from Fig. 2, that the relative gain 

decreases rapidly for increasing values of the unit cost ratio, 

stabilizes around an average value approximately equal to 

10% for values of 70Cs/Cc100 and then increases 

significantly beyond this average value. 

Furthermore, the performance and sensitivity of present 

HSC minimum cost design model to various classes of HSC 

and material stress ratio prescribed in EC-2 have been 

examined. The results are reported in tabular form in Table 

III for Cs/Cc=25. It is clearly seen that the gain percentages 

are insensitive to changes in HSC classes and material stress 

ratios. Significant cost savings up to 14% (16% when 

including self weight effects which may important for long 

beam spans) can be achieved for this design example. 

 
TABLE III: PERFORMANCE OF HSC MINIMUM COST DESIGN MODEL 

VERSUS HSC CLASS AND MATERIAL STRESS RATIO. 

Class of HSC C55/67 C60/75 C70/85 C80/95 C90/105 

fyd /fcd 14 13 11 9 8 

Gain (%) 13 14 14 14 14 

 

Fig. 2. Variation of gain percentage versus unit cost ratio Cs/Cc 
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VI. CONCLUSIONS 

A minimum cost design model is presented for the optimal 

design of reinforced HSC T-beams in bending under ULS 

conditions considering EC2 design stress-strain 

relationships. Cost objective functions including cost of 

concrete, steel and form work, behavior constraints including 

nonlinearities of steel and HSC, conditions on strain 

compatibility in steel and concrete as well as geometric 

design constraints are derived and implemented within the 

Generalized Reduced Gradient optimization algorithm. 

Particular attention was paid to problem formulation, 

solution behavior and economic considerations. 

It is shown, among others that optimal solutions achieved 

using the present model can lead to substantial savings in the 

amount of construction materials to be used. 

Further practical requirements involving other design 

codes and manufacture constraints as well as more 

sophisticated cost objective functions and cross section 

geometry can be implemented within the present cost 

optimization model without major alterations. 

In addition, the proposed approach is practically simple, 

reliable and computationally effective compared to standard 

design procedures used in current engineering practice. 

 

VII. APPENDIX 

A general constrained nonlinear programming problem 

[4], [10], [11] can be stated as follows: 

Minimize ( ),         nf x x F S R  

Subject to 

( )  0    1, 2, .........,  ih x i p  

( )  0   1, .........,   ig x  j p q  

., n, ........   k  b x a kkk 1  

where x=[x1,…,xn] is a vector of n variables, f(x) is the 

objective function, hi(x) (i=1,…,p) is the ith equality 

constraint, and gj(x) (j=1,…,q ; q<n) is the jth inequality 

constraint. S is the whole search space and F is the feasible 

search space. The ak and ak denote the lower and upper 

bounds of the variables xk(k=1,…,n), respectively. It is 

assumed that all problem functions f(x), hi(x), and gj(x) are 

twice continuously differentiable. In most of the nonlinear 

programming problems f(x), h(x), and g(x) are nonconvex 

and the problems have multiple locally optimal solutions. In 

the only case where the f(x) is convex, every hi(x) is linear 

and every gj(x) is convex, constrained local minimum is also 

constrained global minimum. 

The GRG algorithm transforms inequality constraints into 

equality constraints by introducing slack variables. Hence all 

the constraints in the above nonlinear programming problem 

are of equality form and can be represented as follows : 

( )  0    1, 2, .........,  ih x i q  
(A1) 

where x contains both original variables and slacks. Variables 

are divided into Dependent, xD , and Independent , xI , 

variables (or basic and nonbasic, respectively) : 



















I

D

x

x

 x ...
 

 

(A2) 

The names of basic and nonbasic variables are from linear 

programming. Similarly, the gradient of the objective 

function bounds and the Jacobian matrix may be partitioned 

as follow: 
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(A3) 

Let x0 be an initial feasible solution, which satisfies 

equality constraints and bound constraints .Note that basic 

variables must be selected so that JD(x0) is nonsingular. 

The reduced gradient vector is determined as follows: 

)())()(( - )( 01000 xJxJxfxf  g IDDII

  
(A4) 

The search directions for the independent and the 

dependent variables are given by 
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 (A5) 

A line search is performed to find the step length α as the 

solution to the following problem: 

Minimize  

 )d  ( 0 xf  

Subject to 

                            α αα max0   

 

 

 (A6) 

where 









 bdxx  a         
a

 sup 00

max 
  

(A7) 

The optimal solution α* to the problem gives the next 

solution: 

d x x *01     
(A8) 
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