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Abstract—These In this paper, the control of the pneumatic 

actuator using Dahlin algorithm is proposed. Dahlin algorithm 

has problem which cause a steady-state error by an input-side 

disturbance for an integrator plant with time delay. In addition, 

it has problem which not ensure follow-up to a response model 

by parameter error of controller. To solve these problems, we 

introduce discrete-time IMC and iterative least squares 

technique. Our proposed method can remove a steady-state 

error caused by an input-side disturbance for an integrator 

plant with time delay by introducing discrete-time IMC and 

ensure follow-up to a response model by introducing iterative 

least squares technique. In the simulation, it is shown that the 

proposed method has a superior performance for an integrator 

plant with time delay. Furthermore, by applying the proposed 

method to a pneumatic actuator, the effectiveness of the method 

is examined and confirmed. 

 
Index Terms—Dahlin algorithm, discrete internal model 

control, auto-tuning. 

 

I. INTRODUCTION 

Many physical systems, such as thermal processes, 

chemical processes, and long transmission lines in pneumatic 

systems etc. contain time delays. Time delays cause systems 

to destabilize or to degrade their feedback performance.  

Conventional controllers, like the PID controllers [1] 

could be used when the dead-time is small, but they show 

poor performance when the process exhibits long time delays 

because a significant amount of detuning is required to 

maintain closed-loop stability. Various control methods such 

as Smith compensator [2]-[4] and IMC [5] (Internal Model 

Control) were proposed as a method of controlling a system 

with time delays [6]. Eric Dahlin [7] in 1968 proposed a 

control algorithm for a system with time delays. Zhang 

Zhi-Gang et al [8] analyzed Dahlin algorithm in detail. This 

algorithm has advantage that is follow-up to a response 

model. However, a steady-state error is caused by an 

input-side disturbance for an integrator plant with time delay 

in Dahlin algorithm. Furthermore, when estimated plant 

parameters have errors, the plant output is different from that 

of the model. To solve these problems, we introduced 

discrete-time IMC [9] into Dahlin algorithm, because 

discrete-time IMC can eliminate a steady-state error caused 

by an input-side disturbance for an integrator plant with time 

delay. Besides we introduced iterative least squares 

technique [10] which is one of the auto-tuning method 

[11]-[13] or system identification [14], [15] into the 
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algorithm to correct an error of a plant, because this 

technique can calculate correct plant parameter from plant 

input and output. The advantage of the proposed method 

makes output conform to a desired response for an integrator 

plant with long time delay and parameter error. 

In the simulation, it is shown that the proposed method has 

a superior performance for an integrator plant with time 

delay. Furthermore, by applying the proposed method to a 

pneumatic actuator that has an integrator plant with long time 

delay, the practicality of the proposed method is confirmed. 

 

II. DAHLIN CONTROLLER 
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The equation (1) shows a controlled plant. An equation (2) 

is the plant discretized by zero-order-hold at sampling time Ts. 

where L is the time delay, T is the time constant and d=L/Ts is 

integer. 
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A response model is expressed by (3). An equation (4) is 

the response model discretized by zero-order-hold at 

sampling time Ts. where Tm is the time constant. 
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where /s mT T
e 

 . From (2), (4) Dahlin Controller is as (5). 
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III. DISCRETE INTERNAL MODEL CONTROL 

The target value response YD(z)/RD(z) and disturbance 

response YD(z)/DD(z) in discrete-time IMC are as (6). 
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Fig. 1. Block diagram 

 

where M(z) is a disturbance compensator and Gm(z)z-d is a 

plant model. 

When Gm(z) equals to G(z), (6) is written by (7). From (7), 

M(z) is as (8). 
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IV. ITERATIVE LEAST SQUARES TECHNIQUE 
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From (2) and (9). (10) is algorithm of iterative least 

squares technique. An estimated value ˆ( )k d   of   at 

sampling time k-d  is obtained by applying (10) to (9). 
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V. SIMULATION STUDY 

In this section, we show simulation result of the proposed 

method. A unit step set-point was introduced at time t = 

0[sec]. To reduce the influence of the manipulated value in 

start, we used Low Pass Filter. The transfer function of LPF 

was decided by empirical rule. A plant, a plant model and a 

response model are (11), (12) and (13), respectively. The 

initial value of   is based on Gm.  is 1050 in M(z). A load 

disturbance D(s) = -0.1/s was introduced at time t =150[sec]. 

Furthermore, we introduced +100% error to the time constant 

T to confirm the robustness of the proposed method. Fig.1 is a 

block diagram of the proposed method. Simulation results are 

shown in Fig. 2 and Fig. 3. 
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Fig. 2. Nominal System 
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Fig. 3. Robust System (+100% error in T) 

VI. EXPERIMENT 

 
Fig. 4. Pneumatic Actuator 

 

In this section, by applying the proposed method to a 

pneumatic actuator, the practicality of this method was 
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confirmed. The situation is the same as simulation. The 

transfer function of a pneumatic actuator is (15).   Fig.4 is a 

pneumatic actuator. The actuator moves the range of 0 - 90 

degrees, and the angle is detected by a sensor and outputs -10 

- 10[V] depending on an angle. Air pressure is 0.4 [Mpa]. 
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Fig. 5. Output of the pneumatic actuator 

 

VII. CONCLUSION 

In this paper, we have proposed a construction method of 

control system for an integrator plant with time delay. The 

proposed method could remove a steady-state error caused by 

an input-side disturbance for an integrator plant with time 

delay. Furthermore, it could ensure follow-up to a    response 

model. In this experiment, it was shown that our proposed 

method is practicable.  

Future work is to compensate against an error in time delay 

by use of a predicted state feedback. 
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