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Abstract—An important issue in the design of a neural 

network is the sensitivity of its output to input, and node fault. 

In this paper, new sensitive measures are proposed for node 

fault, specifically node stuck-at-zero fault. Correlation 

coefficient between empirical mean squared error and error 

due to proposed metric shows that the proposed metrics are 

significant metrics due to their statistical significance at 95% 

confidence level for node stuck-at-zero fault. 

 

Index Terms—Sigmoidal feedforward neural network, node 

fault, fault metric, fault tolerance.  

 

I.  INTRODUCTION  

An artificial neural network (ANNs) consists of large 

numbers of highly interconnected processing elements 

called neurons. Due to the structure of neural network, it is 

normally assumed to have a fault tolerant architecture [1], 

but it is found in literature [2]-[4] that more study is required 

to design fault tolerant neural network. 

A fault model is proposed in [5] and [6] to study effect of 

faults of ANNs. Basic faults in ANNs are enumerated as: 

1) Fault/Error in input. 
2) Fault/Error in weights/nodes 
3) Fault/Error due to noise 

The fault/errors may be classified as: 
1) The fault/error in input is defined as any outside 

disturbances, which affect the input of a network. Input error 

is also defined as an external fault. It means, missing  a 

component from a input vector leads to error in output [7] or 

contaminated by noise. 

2) Fault in internal architecture of the neural network is 

defined as fault in weights and nodes, fault/error in internal 

layer and fault/error in output nodes [2]. Further 

classification of these faults are characterized as stuck-at 

faults, which has been studied in [1],[8] and [9]. Detailed 

study of node fault is presented in this paper. 

3) The presence of noise in weights and nodes produce 

error in the output of the network. Network error due to 

noise is studied in [10].  

Node fault is studied in [11] and [12] for Radial basis 

function neural network and measures are proposed to Node 

fault is studied in [11] and [12] for Radial basis function 

neural network and measures are proposed to predict error 

due to node stuck-at-zero (NSZ) for the network. In [13], the 

effect of node fault in a feedforward artificial neural 

network (FFANN) is studied. They proposed a constraint 

backpropagation training method to design high degree of 
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fault tolerance when one or two hidden nodes fail. 

By incorporating constraint backpropagation training 

method and a technique called output node saturation, they 

found a network which maintains exactly the same 

performance as a normal network when hidden nodes fail 

entirely.  In [14] multi--node open fault is analyzed and an 

approach called T3 (Train-Test-Train) to design a fault 

tolerant network is proposed. 

In this paper, Section II discusses the architecture of 

FFANN. Section III describes sensitivity measures for node 

fault Section IV discusses the experiments and obtained 

results for node fault and the conclusion is presented in 

Section V.  

II. ARCHITECTURE OF FFANN 

  

 
Fig. 1. Architecture of FFANN 

The architecture of the feedforward artificial neural 

network (FFANN) is illustrated in Fig.1. A network has n 

input nodes with one hidden layer, consisting of m hidden 

layer node and a single output is selected for experiment of 

this work. The connection strength between jth input node to 

ith hidden layer node is defined as wij.  So, net input to the 

ith hidden layer node is given by 



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n

j
ijiji xwnet

1

   (1) 

where Өi is the threshold/bias of the ith hidden layer node. 

The output from the ith hidden layer node is given by  

   ii netfxh    (2) 

The net input to the output node may be defined similarly 

to (1) as follows: 


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 a.h + γ  (3) 
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where αi represents the connection strength between the ith 

hidden layer node and the output node, while γ is the 

threshold/bias of the output node and a = [α0, α1,…… αm]T, 

while h = [h0, h1, .  .  .,hm,]T. 

By considering threshold/bias as the weight coming from 

the auxiliary input node labeled as the zeroth node, (2) can 

be redefined as follows: 





n

j
jij xwnet

0

= Wi.x  (4) 

where Wi = [wi0, wi0,…………..,wmn,]
T and x = [x0, 

x1………, xn,]
T and similarly introducing an auxiliary hidden 

node (i=0) such that h0=1 for any input allows us to redefine 

(3) as follows:  
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where α ≡ γ. The notations are explained in Fig. 1. The 

output of FFANN is given as 

)(netfy      (6) 

In this paper the linear transformation function has been 

used in output for (6) and hyperbolic tangent sigmoidal 

transfer function for hidden layer node in (2).The choice of 

activation function is based on recommendation in [15] and 

[16], where author(s) has claimed that better network can be 

trained with these activation function. 

 

III. SENSITIVITY ANALYSIS FOR NODE FAULT 

The sensitivity measures defined herein are based on the 

variation of the network output and/or network error with 

the variation in the network hidden nodes' output. 

The architecture of the feedforward artificial neural 

network is illustrated in Fig. 1. Output of the network is 

defined as: 
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Mean Squared Error (MSE) is used to measure the error 

due to node fault in the Sigmoidal FFANNs. The goodness 

of the model is measured by the quantity : 

MSE :  
2
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A. Hidden Node Output Based Sensitivity Measure 

In a manner entirely analogous to the establishment of the 

weight sensitivity measures [17], we may define (where we 

treat the output bias as a weight associated with an auxiliary 

hidden node with output value of unity): 
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where p  R and p  1. For p  , (9) becomes (after 

dropping the constant unity term): 

|)max(|)1(
ihS     (10) 

 

where the maximum is over all possible values of i (i (1,2, 

.  .  ., H)) 

B. Gradient With Respect to Hidden Node Output Based 

Sensitivity Measure 

We may define (where we treat the output bias as a 

weight associated with an auxiliary hidden node with output 

value of unity): 
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where p  R and p  1. For p  , (11) becomes: 

|)||,max(|)2( iS     (12) 

where the maximum is over all possible values of i (i (1,2, 

.  .  ., H)). 

C. Hidden Node Output Saliency Based Sensitivity 

Measure 

In a manner entirely analogous to the establishment of the 

weight saliency [18] based sensitivity measures, we may 

define (where we treat the output bias as a weight associated 

with an auxiliary hidden node with output value of unity): 
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where p  R and p  1. For p  , (13) becomes: 

 

|)||,||,max(|)3(  ii hS    (14) 

where the maximum is over all possible values of i (i (1,2, 

.  .  ., H)). 

D. Condition Number with respect to Hidden Node Output 

Based Sensitivity Measure 

In a manner entirely analogous to the establishment of the 

condition number for weight-stuck-zero fault [6] & [9] we 

may define (where we treat the output bias as a weight 

associated with an auxiliary hidden node with output value 

of unity): 
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where p  R and p  1. For p  , (15) becomes: 
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where the maximum is over all possible values of i (i (1,2, 

.  .  ., H)). 

Using the bounds on the activation function, we obtain: 
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where p  R and p  1. For p  , (17)becomes: 
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where the maximum is over all possible values of i (i (1,2, 

.  .  ., H)) 

E. Node Fault Based Sensitivity Analysis 

The modeling of this fault is equivalent to a WSZ fault 

which occurs only for weights leading out from the hidden 

node(s). Thus, in a sense this fault is a subset of the weight 

stuck at zero faults [17] and [20]. For this class of fault, the 

output of one node at a time was equated to zero, and the 

fault metric values evaluated for each. The average over all 

faults, for a network (for a specific task), and patterns is 

used as the measure of fault effect on the network 

behaviour.  

We analyze the case of a single node stuck at zero, one at 

a time (the network output is given by relation (7). We 

consider only the case of a single hidden node bring stuck at 

zero. Let the ith hidden node be stuck at zero, this is 

equivalent to a WSZ for the αi weight. Hence, an appropriate 

measure of the fault is (using (13)): 
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Using the bound on the activation function, we obtain 

another measure of NSZ fault: 
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IV. EXPERIMENTS AND RESULTS  

A small experiment was conducted to demonstrate the 

applicability of the proposed sensitivity measures of node 

fault (9) -- (20)) in SFFANNs. Thirty networks were trained 

for the following approximation task [21].  

 
Fn1: )*sin( 21 xxy   

x1,x2 uniform in [-2,2] 

(21) 
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x1,x2 uniform in [-1,1] 

(22) 
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The data set for ANNs training were generated by 

uniform sampling of the domain of definition of the 

functions. The networks consist of two input, one hidden 

layer and one output node (Fig. 1). The detail of the 

architecture used is summarized in Table 1. The architecture 

was identified by exploratory experiments where the size of 

the hidden layer was varied from 5 to 30 (i.e., the number of 

nodes in the hidden layer were varied from 5 to 30 in steps 

of 5) and the architecture that gave the minimum error 

during training was used. All the hidden node used tangent 

hyperbolic activation function while the output nodes were 

linear. 

 
TABLE I: ARCHITECTURE OF NETWORK USED 

Sr. 

No.  
Function Inputs 

Hidden 

nodes 

Output 

Nodes 

No. of 

Weights 

1. Fn1 2 25 1 101 

2. Fn2 2 15 1 61 

3. Fn3 2 20 1 81 

4. Fn4 2 10 1 41 

 
The resilient back propagation (RPROP) [22] algorithm 

as implemented in MATLAB 7.2 Neural Network toolbox 

was used with the default learning rate and momentum 

constant. For training the network, 200 samples were 

generated from the input domain of the functions. 5000 

epochs of training was conducted for each problem. Thirty 

networks were trained with the above procedure. 200 

samples were used for the validation purpose and 19600 

samples were used for the testing purpose for each network. 

Mean squared errors are generated for each network under 

training, validating and testing routine. A network which has 

a least validation error is selected for further analysis of 

proposed sensitivity measures.  

 

  
Fig. 2. Demonstration of Error of 30 networks for Fn1 Fig. 3. Demonstration of Error of 30 networks for Fn2 



  
Fig. 4. Demonstration of Error of 30 networks for Fn3 Fig. 5. Demonstration of Error of 30 networks for Fn4 

 
TABLE II: CORRELATION COEFFICIENT 

Sr. No. Function )9(1
2S  )11(2

2S  )13(3
2S  )15(4

1,2S  )17(4
2,2S  )19(5

1,2S  )20(5
2,2S  

1. Fn1 -0.01(0.97) 0.97(0.00) 0.98(0.00) -0.14(0.45) -0.20(0.01) 0.79(0.00) 0.97(0.00) 

2. Fn2 -0.18(0.35) 0.98(0.00) 0.98(0.00) -0.12(0.54)  0.36(0.00) 0.86(0.00) 0.99(0.00) 

3. Fn3  0.14(0.45) 0.92(0.00) 0.93(0.00)  0.45(0.01)  0.30(0.04) 0.86(0.00) 0.96(0.00) 

4. Fn4 -0.08(0.68) 0.94(0.00) 0.98(0.00)  0.30(0.10) -0.11(0.01) 0.91(0.00) 0.95(0.00) 

 
For this fault, the network with the minimum validation 

error need not be the network that gives the minimum error 

under fault. This is illustrated in Fig. 2 - Fig. 5 (for Fn1 - 

Fn4, respectively). The network with the minimum 

validation MSE and the network with the minimum value of 

the fault metric value are indicated. Fig. 2 - Fig. 5 

demonstrate that in general the minimum validation error 

network and the minimum fault metric value networks 

differ for specific tasks. 

From these figures it is clear that the network with the 

minimum validation error does not necessarily have the best 

behavior under the fault. Another striking facet of these 

figures is the observation that irrespective of whether we 

consider the fault measure value over the training set or the 

validation / test set, the fault metric values appear to be very 

close. This lead us to conjecture that -- the fault metric 

value for the train set, the validation set and the test set all 

belong to the same distribution. The result of the t-test [23] 

and the Kolmogrov-Smirnov test [24] performed for the 

verification of this conjecture showed that the fault metric 

value for these three dataset belonged to the same 

distribution at the 5% significance level.  

This shows that for at least the NSZ analysis, the data 

over the training set or the validation set (that is the data 

usually available before commencement of training) is 

sufficient for the fault tolerance studies. Thus, for NSZ fault 

analysis in this paper validation data set is used. (Though 

we could have used the training dataset also, the choice is 

arbitrary). This is a significant result in the sense that the 

behavior on unknown data sets can be figured out in terms 

of the available data set.  

The coefficient of correlation values between the fault 

measures (8), NSZ fault empirical MSE and the sensitivity 

measures proposed in this paper for NSZ fault is shown in 

Table II. The figure in brackets represents the probability of 

obtaining the correlation as large as the observed value by 

random chance, when the true correlation is zero. If 

probability is small (less than 0.05), then the correlation is 

significant. 

V. CONCLUSION 

In this paper, detailed experiments are performed for four 

approximation tasks. Validation error is used for the 

selection of best network for further analysis. Chosen 

network was used for further analysis of node stuck-at-zero 

fault. Experimental result demonstrates that 

)19(),13(),11( 5
1,2

3
2

2
2 SSS  and )20(5

2,2S statistically significant 

measures of the NSZ fault at 95% confidence level and 

correlation value at 0.75. 
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