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Abstract—This paper explains and demonstrates how to 

estimate an output disturbance in an auto-regressive model. 

This method uses the independent component analysis (ICA) 

technique, which restores source signals from their linear 

mixtures under the assumption that the source signals are 

mutually independent. The estimation is achieved by a model 

whose source signals consist of input and output disturbance, 

and observed signals consist of input and output. To solve the 

ICA problem, a natural gradient method based on mutual 

information is adopted. As a result, in this simulation, the NRR 

of our proposed method shows an improvement of about 4.0 

[dB] compared with that of a conventional method. 

 
Index Terms—Independent Component Analysis (ICA), 

Blind Signal Separation (BSS), kullback-leibler divergence, 

Auto Regressive (AR) model. 

 

I. INTRODUCTION 

The goal of blind signal separation (BSS) is to restore 

source signals from their mixtures without priori-knowledge 

of the source signals and a mixing process which generates 

the mixtures. In the case of the instantaneous mixture model, 

in which the mixtures are generated as linear combinations of 

the source signals, ICA [1] is one of the successful 

approaches. ICA has been applied in various areas such as 

speech, audio, images, and communications. In ICA, the 

observed signals, which are outputs from a mixing process, 

are linearly transformed such that separated signals, which 

are outputs from separating process, are statistically as 

independent as possible under the assumption that the source 

signals are mutually independent. 

Various control system techniques to reduce the 

disturbance have been reported [2], [3]; however, most of the 

methods are required an information of accurate plant model 

parameter. From such a background, if a control system is a 

stable plant and the input signals are mutually independent, 

ICA technique makes it possible to estimate an output 

disturbance without depending on a system transfer function. 

This paper describes an estimation process based on an 

ICA algorithm in an single-input single-output (SISO) 

control system. The estimation is achieved by a model whose 

source signals consist of input and output disturbance, and 

observed signals consist of input and output. 

 

II. BSS PROBLEM FOR ICA 

It is assumed that source signals ( )ns t  consist of N signal 

 
Manuscript received September 31, 2012; revised December 31, 2012. 

     The authors are with School of Science and Technology, Meiji University, 

Kawasaki-shi, Kanagawa, 214-8571 Japan. (e-mail: rtanaka@meiji.ac.jp). 

sources described by ( )ns t  ( = 1, . . . , )n N , and observed 

signals consist of an M-channel sensor array ( )M N  

described by ( )mx t  ( = 1, . . . , )m M , where t indicates a 

discrete-time index. The BSS model is formulated as 
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( ) ( ),
N

m nm n

n

x t a s t


                                 (1)
 

where nma  is an attenuation coefficient representing a path 

from the nth source to the mth sensor. By using a vector or 
matrix notation, (1) is rewritten as 

( ) ( ),t tx As
                                  (2)

 

where 
M NA   is a mixing matrix, 

1( ) [ ( ),..., ( )]T

Nt s t s ts  

is a source signal vector, 
1( ) [ ( ),..., ( )]T

Mt x t x tx  is an 

observed signal vector, and the superscript 
T  denotes a 

transpose of a matrix. 

On the other hand, the separating process is formulated 

with separated signals denoted by ( )ns t  ( = 1, . . . , )n N . The 

separating process is expressed by 
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where nmw  is a coefficient for separation. By using a vector 

or matrix notation, (3) is also rewritten as 

( ) ( ),t ts Wx
                                (4)

 

where 
1( ) [ ( ),..., ( )]T

Nt s t s ts    is a separated signal vector, 

and N MW   is a separating matrix. 
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Fig. 1. Block diagram of BSS based on ICA ( )M N . 

Fig. 1 shows a block diagram of BSS based on ICA. If the 

number of observed signals M is equal to or more than that of 

source signals N, and all independent components are 

non-Gaussian with the exception that a one Gaussian 

component is permitted [1], ICA estimates source signals that 

exclude permutation and amplitude ambiguity without an 

information of mixing process [4]. Hence, W  satisfied by 
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WA PD  
(5) 

has to be calculated, where P  is a permutation matrix given 

by permuting row (or column) vectors of the identity matrix, 

and D  is an amplitude matrix given by arbitrary diagonal 

matrix. 

 

III. MODEL FORMULATION 
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Fig. 2. Block diagram in an SISO system. 

Fig. 2 shows a block diagram in SISO system with an 

auto-regressive model. In Fig. 2, ( )u n  is an input, ( )d n  is an 

output disturbance, ( )y n  is an output, and ( )zG  is a plant 

transfer function as follows. 
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where the parameters 1a   and b  are arbitrary real values. 

By using (6), the relation between ( )u n  and ( )y n  in 

Z-domain is expressed by 

( ) ( ) ( ) ( ),Y z G z U z D z 
                  (7)

 

where ( )U z , ( )D z , and ( )Y z  denote Z-transform of ( )u n , 

( )d n , and ( )y n , respectively. Eq. (7) is transformed by an 

inverse Z-transform such that 
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By using (8), a matrix representation that regards ( )u n  

and ( )y n  as observed signals is expressed by  

( ) ( )
,

( ) 1 ( )

I 0n n

y n d n

     
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where 1( ) [ ( 1),..., ( )]Tn u n u n     u   is an input signal 

vector that consists of lag elements of ( )u n , I
   is a 

unit matrix. 1 θ   is a model parameter vector, and 

( )k   is tap length. Eq. (9) is rewritten as  

,  x A s
                                  (10)

 

where ( 1) 1[ ( ), ( )]Tn y n     x u   is an observed signal 

vector, ( 1) 1[ ( ), ( )]Tn d n     s u   is a source signal vector, 

and 
( 1) ( 1)   A   is a mixing matrix such that 

.
1

I 0 
   
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A

θ                        (11)
 

By transferring (11), the problem is reduced to an ICA 

problem. That is, the problem is to estimate an optimal linear 

parameter vector θ . 

 

IV. CONVENTIONAL ICA ALGORITHM 

Minimizing the mutual information of separated signals 

[5] has been adopted for an ICA algorithm. In probability 

distribution, this algorithm is based on a property that a joint 

probability density function (p.d.f.) for source signals is 

equal to the multiplication of each marginal p.d.f. if these 

signals are mutually independent. Kullback–Leibler 

divergence (KLD) is adopted as an independent index. KLD 

( ; )J s W  for separating matrix W  and separated signal s  is 

defined as 

1
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where ( ; )p
s

s W   is the joint p.d.f. of s  determined by W , 

and ( ; )H s W  is an information entropy defined as 
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where detW  is a determinant of W . Hence, Eq. (12) is 

rewritten as 

1

( ; ) ( ; ) ( ) log det .
N

n

n

J H s H


  s W W x W 
        (14)

 

If the components of s  are mutually independent, the 

equal sign in (14) is approved. Hence, it only has to decide 

W  that decreases ( ; )J s W . The partial differential of 

( ; )J s W  for W  is calculated by 

( ; ) ( [ ( ) ] )( ) ,T T

p
J E  

 
 s

s W s s I W
W 

  
     (15)

 

where 
1( ) [ ( ),..., ( )]T

Ns s  s    is a score function. ( )ns   is 

given by a differential of log ( )np s  like 

( ) log ( ).n n

n

d
s p s

ds
   

                      (16)
 

This substitutes variety of nonlinear functions ( )ns   for 

( )p s  because s  is unknown. To decide on its substitution, a 

normalized kurtosis   is introduced such that 
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which quantifies a sharpness of p.d.f. of signals. Based on 

(17), ( )ns   determines whether to use tanh( )ns  or 3

ns  by 

the positive and negative values of   such that 

3
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Amari et al. pointed out that (15) does not always give a 

steepest descent direction because the space that probability 

distributions make becomes a Riemann space [6]. Thus, they 

proposed an update rule with natural gradient such that 

( ; ) ( [ ( ) ]) .T

p
J E 


 

 s
s W I s s W

W 
  

           (19)
 

 

V. REARRANGE UPDATE RULES 

The model described in section 3 cannot be directly 

applied in conventional ICA techniques because A  has a 

special structure. Another factor is that both the terms in (9) 

include the same component ( )nu , and every element is not 

mutually independent. Hence, the separating matrix also 

requires a special structure. The entire separating matrix W  

need not be updated because A  has a special structure in 

which each component of A  other than θ  is constant. 

Hence, Eq. (19) is rewritten as 

( [ ( ) ]) ,T

p
E    

s
W Ψ I s s W


 

          (20)
 

where 
( 1) ( 1)   Ψ   is a projection matrix consisting of 

diag(0,...,0,1).Ψ
                        (21)

 

When calculating [ ]E  , the sample average is substituted 

with the time average to lower the estimation cost. Eq. (20) 

makes it possible to update only θ . After (20), W  is 

updated as 

,

F

 
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

W
W W

W                     (22)
 

where   is an arbitrary positive step size parameter, and 

F
  denotes a Frobenius norm. By using (22), separated 

signal vector ( 1) 1[ ( ), ( )]Tn d n     s u   is obtained as 

,  s W x
                              (23)

 

where ( )d n  is an estimated output disturbance by ICA. 

After ICA, W  is normalized so that all its diagonal elements 

are 1, because all the diagonal elements of 
1A  are 1. 

 

VI. SIMULATIONS 

In the preceding section, the algorithm for an output 

disturbance estimation in an SISO system has been shown. In 

this section, two simulations to evaluate the performance of 

signal estimation are demonstrated. The first is our proposed 

method. The second is Miyaura‟s method [7], whose 

algorithm adopts FastICA [8] and neural networks for ICA 

[9]; however, the second method is not discussed in detail in 

this paper owing to space constraints. The sampling time and 

the signal length for this control system are 0.01 sec and 5.00 

sec, respectively. The system transfer function ( )zG  is set to 

two patterns like 

1
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and  
1

2 1 2
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An initial parameter matrix 0W  for separating matrix W  

is determined by 

( 1) ( 1)

0
.I

    W 
                      (26)

 

0W  derives the fact that all the diagonal elements of 
1A  

are 1 and the tap length   is 6 points. The objective 

measurement in terms of noise reduction rate (NRR) is 

considered. NRR among ( )d n , ( )y n , and an estimated 

output disturbance ( )d n  is defined as 

10

var[ ( ) ( )]
NRR[dB] 10log ,

var[ ( ) ( )]

y n d n

d n d n




             (27)
 

where var[ ]  denotes the variance of a random variable. 

NRR is an index that shows how many noises can be reduced 

from the observation point. Figure 3 shows an input ( )u n , an 

output disturbance ( )d n , and an output ( )y n . The input 

( )u n  is a step signal, and its rise time is set to 1.00 sec. ( )d n  

is white Gaussian noise. 

Fig. 4 and Fig. 5 show an estimation error in the first-order 

system and the second-order system, respectively. And table 

1 and 2 show the result of  NRR and SNR with Miyaura„s 

method and proposed method, respectively. It is shown that 

our proposed method allows for more accurate estimates than 

Miyaura‟s method in objective measurement. 
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Fig. 3. Input, output disturbance, and output in simulation. 
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Fig. 4. Estimation error in primary system  

(Blue is an conventional method, and Red line is our proposed method.) 
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Fig. 5. Estimation error in secondary system 

(Blue is an conventional method, and Red line is our proposed method.) 

 
TABLE I: NRR AND SNR WITH CONVENTIONAL METHOD 

 NRR [dB] SNRout [dB] 

Conventional method (
1
( )zG ) 13.4492 13.6497 

Conventional method (
2
( )zG ) 12.9665 13.2917 

 
TABLE II: NRR AND SNR WITH PROPOSED METHOD 

 NRR [dB] SNRout [dB] 

Proposed method (
1
( )zG ) 17.2002 18.1902 

Proposed method (
2
( )zG ) 17.2004 18.1716 

 

VII. CONCLUSION 

We confirmed that our proposed method made it possible 

to estimate an output disturbance without the dependence of 

transfer characteristics if a system was a stable plant. The 

estimation in our method was achieved by a model whose 

source signals consisted of input and output disturbance, and 

observed signals consisted of input and output. Our 

experiments revealed that this method shows more accurate 

estimation than Miyaura‟s method. 
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