
 

Abstract—The Multi-layer Perceptron Neural Networks 

(MLP NN) are well known for their simplicity, ease of training 

for small-scale problems, and suitability for online 

implementation. This paper presents the methodology and 

challenges in the design of near-optimal MLP NN based 

classifier with maximize classification accuracy under the 

constraints of minimum network dimension for implementation 

intelligent sensors. 

 
Index Terms—Classifier, neural networks, multi-layer 

percptron, intelligent sensors. 

 

I. INTRODUCTION 

Neural networks have special features, such as, capability 

to learn from examples, adaptations, parallelism, robustness 

to noise, and fault tolerance. They learn how to separate 

classes of signals by examples used for training and, 

therefore, the user need not know exhaustively the properties 

of the signals. Their main advantages are the ability to 

generalize results of sensors obtained from known situations 

to unforeseen situations.  Neural networks are intrinsically 

capable of recognizing a complex pattern [1]. 

Tian [2] in his work related to intelligent sensors 

mentioned that intelligent sensors are an extension of 

traditional sensors to those with advanced learning and 

adaptation capabilities. An intelligent sensor can incorporate 

features that enable it to compensate for systematic errors, 

system drift, and random errors produced due to system 

parameters or the characteristics of the sensor. There are 

several references related to applications of neural networks 

in intelligent sensors used to incorporate the functionalities, 

such as, classification, regression, linearization, error 

correction, noise compensation, prediction, etc. to the sensors 

making them intelligent. Kato and Mukai [3] developed an 

intelligent gas sensor system for discrimination and 

quantification of gases by a single semiconductor gas sensor 

in real-time. Charniya and Dudul [4] developed neural 

networks-based intelligent sensor system for the 

classification of material type even with the variation in the 

sensor parameter. For classification, near-optimal classifier 

models were designed to maximize accuracy under the 

constraints of minimum network dimension. One of the most 

powerful uses of neural networks is in function 

approximation (curve fitting). In this context, the usage of 

neural network techniques provides lower interpolation 
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errors when compared with classical method of polynomial 

interpolation [5].     

Neural networks can exactly identify a nonlinear system 

model from the inputs and outputs of a complex system, and 

do not need to know the exact relationship between inputs 

and outputs. A mathematical model of thermocouple has 

been established based on neural networks by [6]. Arpaia et 

al. [1] have proposed a low cost methodology using neural 

network based inverse model and the related application 

procedure for compensating the systematic error in nonlinear 

sensors affected by combined interfering parameters. A 

prototype of an eddy-current transducer for displacement 

measurements has been designed by implementing the 

proposed approach. The neural networks capability of 

correcting the nonlinear influence of the target material and 

area variations was experimentally verified.  

Temperature drift errors are problems that affect the 

accuracy of measurement systems. When small amplitude 

signals from transducer are considered and environmental 

conditions of conditioning circuits exhibit a large 

temperature range, the temperature drift errors have a real 

impact in system accuracy. Neural networks based solution to 

overcome the problem of temperature drift errors of signal 

conditioning circuits has been proposed by [5]. Patra and Bos  

[7], and Pramanik et al. [8] have proposed a novel 

computationally efficient neural network for modeling of a 

pressure sensor operated in a dynamic environment. It has 

been found that neural network is capable of estimation of 

pressure quite accurately irrespective of nonlinear 

characteristics of the pressure sensor, and its temperature 

dependence.  

Borecki [9] presented the construction and working 

principles of neural network based intelligent fiber-optic 

intensity sensor used for examining the concentration of a 

mixture in conjunction with water using neural networks. 

Application of the sensor has been proposed in wastewater 

treatment plant for selection of a treatment process. Neural 

networks are powerful signal processing tools in the area of 

numerical linearization of sensor characteristics with 

compensation of errors due to influence quantities. 

Postolache et al. [10] have reported the development of an 

intelligent turbidity and temperature-sensing unit for water 

quality assessment using neural networks. The proposed 

intelligent turbidity sensor using neural network permits to 

reduce the effect of detector-to-detector variability, light 

source intensity variations, and water absorbance.     

 

II. NEURAL NETWORKS AS CLASSIFIER 

The central problem in classification is to define the shape 
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and placement of the boundary (decision surface) in the 

pattern space so that the class-assignment errors are 

minimized. The neural network builds discriminant functions 

from its Processing Elements (PEs) or neurons. Discriminant 

functions intersect in the input space defining a decision 

surface. The discriminant function evaluates every position 

in pattern space and produces larger value for one class and 

low values for all others. The neural networks topology 

determines the number and shape of the discriminant 

functions. The shapes of the discriminant functions change 

with the topology. One of the major advantages of neural 

networks is that they are sufficiently powerful to create 

arbitrary discriminant functions; therefore, neural networks 

can achieve optimal classification. The placement of the 

discriminant functions is controlled by the network weights. 

The weights are adjusted directly from the training data 

without any assumptions about the data's statistical 

distribution. Hence, one of the important issues in neural 

network-based classifier design is to utilize systematic 

procedures (a training algorithm) to modify the weights so 

that as accurate a classification as possible is achieved.  

Neural classifiers have the advantage of reducing 

misclassifications among the neighborhood classes compared 

to linear classifiers (such as, Classification And Regression 

Trees (CART)). The CARTs are statistical structures that 

were proposed by [11]. The Fig. 1 shows a typical example of 

decision boundaries formed by linear classifiers and neural 

network-based classifiers for three distinct classes. The thick 

lines in the figure show the decision boundary obtained by 

using linear classifier, whereas, the thin curves show the 

decision boundary corresponding to the neural 

network-based classifier. It is depicted that the linear 

classifier gives relatively poor separation of the classes 

compared to the neural network-based classifier. 

 
Fig. 1. Class separation for neural networks-based classifier and linear 

classifier 

 

III. DESIGN OF MLP NN BASED CLASSIFIER 

The Multi-layer Perceptron Neural Network (MLP NN) is 

selected in many applications due its simplicity, suitability 

for online implementation, and ease of training for 

small-scale problems. The capability of MLP NN trained by 

error back-propagation algorithm (supervised training) has 

been successfully demonstrated in many applications for 

nonlinear function approximation, and classification with 

any degree of accuracy. 

The near optimal classifiers using MLP NN should be 

meticulously designed using all generalization parameters. 

The generalization performance of the networks are validated 

meticulously on the basis of important parameters [12], [13] 

such as, mean square error (MSE), and percent classification 

accuracy (PCLA) on the testing instances, while attempting 

different input data partitions. Input data used in this paper 

belong to neural networks based intelligent sensor developed 

by the author [4]. A rigorous computer simulation has been 

carried out to design the near-optimal parameters of the MLP 

NN based classifiers. The classifier model is designed to 

maximize accuracy under the constraints of minimum 

network dimension. 

 
Fig. 2. Multilayer perceptron neural networks 

 

Fig. 2 illustrates a typical MLP NN. The circles are the PEs 

arranged in layers. The left column is the input layer, the 

middle column is the hidden layer, and the right column is the 

output layer. The lines represent weighted connections (i.e., a 

scaling factor) between PEs. 

The architecture of network is almost completely 

determined by problem specifications, including the specific 

number of inputs and outputs and the particular output signal 

characteristic. Number of network inputs is equal to number 

of problem inputs. Whereas, the number of neurons in the 

output layer is equal to problem outputs. 

When designing a neural network, one should concentrate 

with the aspects such as, network topology, number of layers 

in the network, number of neurons or nodes per layer, choice 

of activation function in the neurons, learning algorithm to be 

adopted, numbers of iterations per pattern during training, 

network performance, final values of weights and biases, etc.  

The design of a near optimal MLP NN requires the 

determination of the activation functions and the thresholds 

of the PEs, as well as of the connection weights. The 

activation functions and the thresholds are defined by a 

recursive optimization procedure. The connection weights 

are computed by means of a learning algorithm.  

The MLP NN based classifier models aims at maximum 

classification accuracy under the constraints of minimum 

network dimension. For this, the classifier has to be tested 

with several different numbers of hidden units and 

incremental results are obtained corresponding to how well 

the different variants of back-propagation algorithm.  

Fig. 3   shows the training curves for a typical MLP NN 

trained with different variants of back-propagation training 

algorithms, such as, Step learning, (STEP), Momentum 

learning, Delta-Bar-Delta learning (DBD), Conjugate 

Gradient learning (CG), Levenberg Marquadt learning 

(LMQ), and Quick Propagation learning (QP) performed 
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[13]. Choose the training    algorithm    that    converges   

faster with minimum oscillations during convergence. MOM 

depicts faster convergence with reasonable stability for a 

typical MLP NN. 

 
Fig. 3.   Comparison of different learning curves for the training of MLP NN 

 

During training of the neural networks, the learning curves 

for the training and validation data sets are plotted (Fig. 4). 

When the error on the validation set is lowest the network is 

deemed to have reached the generalization [12]. The trained 

networks are then challenged by test data sets whose classes 

are unknown. The generalization performance of the 

networks should be validated meticulously on the basis of 

important parameters such as, MSE and PCLA on the testing 

instances, while attempting different data partitions to 

improve the speed of learning and generalization ability, and 

avoidance of local minima. 

 
Fig. 4.   Stopping point from learning curve for training and validation sets 

 

Another issue of training the neural networks is how to 

choose the initial weights. The search must start some place 

on the performance surface (the total error surface plotted in 

the space of the system coefficients (weights)). That place is 

given by the initial condition of the weights. However, the 

network’s PEs have saturating nonlinearities, so if the weight 

values are very large, the PE can saturate. If the PE saturates, 

the error that goes through becomes zero, and previous layers 

may not adapt. Small random weight values will put every PE 

in the linear region of the sigmoid at the beginning of 

learning. 

Before training, the entire data set is usually randomized 

first. The initial conditions and other training parameters 

have a prominent effect on the learning performance of the 

network. In order to gauge the real performance of neural 

networks, it should be re-trained a number of times with 

different random initialization of connection weights [13]. 

This ensures true learning, helps  avoid  local  minima, and 

entails generalization. The possible parameter variations 

chosen for the design of MLP NN are depicted in the Table I. 

 
   TABLE I: VARIABLE PARAMETERS OF NEURAL NETWORKS 

Parameters Typical Range 

Number of hidden layers (1 to 3)  

Number of hidden neurons (2 to 100) 

Learning-rate parameter (0 to 1) 

Momentum constant (0 to 1) 

Transfer function of neurons 

in the network layers 

tanh, sigmoid, linear tanh,  

linear sigmoid, linear 

Learning rule STEP, MOM, DBD, CG, LMQ, QP 

 

Variation of average of PCLA with the number of hidden 

neurons, for the training, cross validation, and testing data set 

is plotted in a typical example shown in Fig. 5. Similarly, 

learning rate parameter, and momentum constant are 

determined [13]. The choice of these values was made as per 

the exhaustive experimentation for the training of the MLP 

NN for different values of these parameters. The values 

which maximum average PCLA should be chosen. 

 

Fig. 5.   Accuracy with the number of hidden neurons of a typical MLP NN 

for training, cross validation, and testing data sets 

 

Further, the network should be trained with different 

transfer function in hidden layer and output layer. Fig. 6 

shows example of a typical MLP NN that gave maximum 

classification accuracy for tanh transfer in hidden layer 

neurons.  

 
Fig. 6.   Comparison of percentage classification accuracy of MLP NN for 

different neuron transfer functions in hidden layer. 
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Similar experimentation is carried out for different number 

of hidden layers with variations in number of neurons in 

them. Fig. 7 shows a plot of number of hidden layers versus 

the classification accuracy. It shows maximum accuracy for 

two hidden layer MLP NN. Increase in the number of hidden 

layer may not improve the performance of the classifier 

significantly. On the contrary, it takes more time for training 

because of higher computational complexity of the network, 

and the network looses generalization ability. In case the 

accuracy of MLP NN comes out to be same at different 

number of layers then test the robustness by adding equal 

percentage of Gaussian noise to the input data in order to 

select the optimal architecture. 

 

Fig. 7.   Classification performance of the MLP NN on different number of 

hidden layers 

 

IV. HARDWARE IMPLEMENTATION OF NEURAL NETWORKS 

Implementation of neural networks can be accomplished 

using either analog or digital hardware. The digital 

implementation is more popular as it has the advantage of 

higher accuracy, better repeatability, lower noise sensitivity, 

better testability, and higher flexibility and compatibility 

with other types of preprocessors. On the other hand, analog 

systems are more difficult to be designed and can only be 

feasible for large-scale productions, or for very specific 

applications. The digital neural networks hardware 

implementations are further classified as: 1) 

Field-Programmable Gate Array (FPGA) based 

implementations; 2) Digital Signal Processor (DSP) based 

implementations; and 3) Application Specific Integrated 

Chip (ASIC) based implementations. DSP-based 

implementation is sequential and hence does not preserve the 

parallel architecture of the neurons in a layer. ASIC 

implementations do not offer re-configurability by the user, 

and are prohibitively costly in development. The 

advancement of FPGAs in recent years, allowing millions of 

gates on a single chip and accompanying with high-level 

design tools has allowed the implementation of very complex 

neural networks [14]. It allows the fast design of complex 

systems with the highest performance/cost ratio [15]. FPGA 

is the most suitable hardware for neural networks 

implementation as it preserves the parallel architecture of the 

neurons and can be flexibly reconfigured by the user as the 

application demands. It is also capable of supporting the 

dynamic creation and design modification of neural network 

topologies. It has performance speeds, fabrication area and 

precision closer to ASICs [16]. This type of realization makes 

the network stand alone and operate on a real-time fashion. 

Neural networks have been successfully implemented in 

digital hardware, such as FPGA, DSP, and microcontroller 

[17], [18]. 

Hardware implementation of MLP NN using FPGA has 

been described by [17]. Despite improvements in FPGA 

densities, the numerous multipliers in neural networks limit 

the size of the network that can be implemented using a 

single FPGA, thus making neural networks applications not 

viable commercially. The proposed implementation aimed at 

reducing resource requirement, without much compromise 

on the speed for online applications, so that larger neural 

networks can be realized on a single chip at a lower cost. The 

sequential processing of the layers in neural networks has 

been exploited in this paper to implement large neural 

networks using a method of layer multiplexing. Instead of 

realizing a complete network, only the single largest layer is 

implemented. The same layer behaves as different layers with 

the help of a control block. The control block ensures proper 

functioning by assigning the appropriate inputs, weights, 

biases, and excitation function of the layer that is currently 

being computed. MLP NNs have been implemented using 

Xilinx FPGA. 

Yang and Paindavoine [18] describe three hardware 

implementations of RBF neural network-based real-time face 

tracking and identity verification model on embedded 

systems based, respectively, on FPGA, zero instruction set 

computer chips, and digital signal processor (DSP) 

TMS320C62 from Texas Instruments. Results of FPGA 

implementation have been presented in terms of hardware 

resources used and processing speed. 

Depari et al. [19] have proposed an approach to estimate 

biaxial position with a pyro-electric sensor array. 

Pyro-electric sensors convert a flux of incident radiant 

energy into an electric signal, and an array of it was used for 

contactless displacement measurement by means of a 

light-spot cursor. A full DSP-based electronics approach to 

process signals from a pyro-electric sensor array has been 

proposed and experimentally evaluated to improve 

performances and simplify the calibration procedure if 

compared to an analog electronic circuit. The DSP 

TMS320C6711 based electronics was used to handle the 

excitation, acquisition, and processing that resulted in a 

compact solution. By means of coherent sampling and fast 

Fourier techniques, the light intensity of each array element 

can be measured. A DSP-based hardware has been also 

developed for different neural networks.  

Not only the neural networks but also the required 

pre-processing and feature extraction techniques can be 

carried out by a precise and optimal digital hardware 

implementation for further compactness, portability, and 

reliability.  

 

V. CONCLUSION 

An exhaustive computer simulation should be carried out 

to design the optimal parameters of the neural networks. For 

ensuring the generalization and true learning performance, 

the classifiers should be trained and tested on different input 
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data partitions. This is essential to remove any biasing and 

prejudice from the learning machine. Refinements are made 

to the resources used by the neural networks, with a result of 

a reduction in the training time and optimal architecture of 

the networks. Optimal trade-off between neural network 

accuracy and complexity is determined. Using this 

methodology, MLP NN network can be designed to 

maximize accuracy under the constraints of minimum 

network dimension so that its hardware implementation for 

intelligent sensors further requires minimum number of 

components to satisfy real time constraints and low power 

consumption. 
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