
 

  
Abstract—This paper deals with the new method to design 

the optimum design for hospital bed, which can support the left 
and or right leg for patient‘s leg splint. GAs as an optimization 
method was selected to search the minimum mass of bed 
structure whilst fulfilling some structure constraints such as 
stress, displacement and buckling. The GAs and FE code were 
developed to analyze the structure in MATLAB. Two 
optimization problems were set to search the minimum mass. In 
Problem I, the height and width of cross-section in each element 
was varied from 1 to 5 cm. Whilst the height and width of 
cross-section in Problem II were selected from 1, 2 and 5 cm. 
The minimum masses achieved from both problems were 57.31 
and 49.25 kg, respectively. The minimum masses obtained from 
Problem II were more than that from Problem I but it 
practically made the bed structure easier. Therefore, this paper 
demonstrates that it is possible to design the hospital bed for 
independently supporting left and or right leg by using the 
concepts of GAs combined with FEM to search the optimum 
mass.  
 

Index Terms—finite element, Genetic Algorithms, hospital 
bed, optimization. 
 

I. INTRODUCTION 
At present, there are many types of the hospital bed with 

various functions, for example, it can lift the head section 
and/or leg section of the bed as shown in Fig. 1 or it can 
change between bed and chair as shown in Fig. 2. 
Unfortunately, the hospital bed cannot lift either a left leg or a 
right leg. That means when the patient’s left leg or right leg is 
broken, the hospital bed need to lift both legs. It cannot lift 
independently.  This paper will focus on the hospital bed 
design for independently separating the left and or right leg.  

The structure of the hospital bed is typically complicate 
and heavy. This paper proposes the design method to reduce 
the mass of the bed structure. To reduce the bed mass, the 
optimization technique including the Finite Element Analysis 
(FEA) can be employed. In 1997, Jenkins [1] demonstrated 
the success of using the optimization technique with Genetic 
Algorithms (GAs) to reduce the sizes of multistory frame for 
the optimum mass. In 1998, Annicchaiarico and Cerrolaza [2] 
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applied GAs including 2-D finite element shapes to a 
three-dimensional 25-bar truss tower to obtain the optimum 
mass subject to the stress and displacement and buckling 
constraints. Later, Coello and Christiansen [3] proposed the 
new GA-based multi-objective optimization problems to 
minimize mass and to meet the maximum displacement and 
stress of the structure using the cross-section area of each 
element as the design variables for a 25-bar truss tower 
similar to Annicchaiarico and Cerrolaza’s work in 2000. In 
2001, Deb and Gulati [4] applied the real-coded GAs to 2-D 
and 3D trusses to achieve minimum mass subject to stress, 
deflection and kinematic stability constraints.  
 

 
Fig. 1 General hospital bed. [5] 

 

 
Fig. 2 Hospital bed combined bed and chair. [6] 

 

This paper will optimize the structural mass of the hospital 
bed for independently separating left and or right leg by using 
GAs combined with 2-D beam element in FEA. The results of 
FEA such as stress, deflection, and buckling are added in 
GAs procedure as the constraints to find the structural size of 
each element. All are done and developed the code in 
MATLAB program   
 

The Sizing Optimization of Hospital Bed Structure for 
Independently Supporting Left and or Right Leg Using 

Genetic Algorithms 

Rung Kittipichai and Atthaphon Ariyarit  

International Journal of Modeling and Optimization, Vol. 1, No. 2, June 2011

122



 

II. THEORY OF ANALYSIS 
This section explains the theory of Finite Element Method 

(FEM) to apply to the bed structure to find the displacement, 
stress and buckling of the structure. And then GAs is 
demonstrated how to apply FE including GAs algorithm.  

A. Finite Element Method for Structural Analysis 
The Finite element method is a numerical procedure for 

analyzing elastic structures. The structure is divided into a 
number of simple shaped elements called finite elements. 
Each element is interconnected at nodes. If the structure is 
under applied forces or loads, the displacement in each node 
is obtained by formulating the properties of each element 
then assembling all of the elements to obtain a global Finite 
Element (FE) model. Once the FE model is created, the 
equations of equilibrium can be solved by using the computer 
to get the displacement of each node after nodal forces or 
loads and boundary conditions are applied. 

There are many methods to model elastic structures. One 
key method used to formulate FE model is the principle of 
minimum potential energy (PMPE). Hamilton’s principle is 
an approach which can be used to obtain the PMPE [7]. 
Therefore, the equation of equilibrium for the eth element in 
the local coordinate system can be expressed as follows 

e eT e e e

Ω
{F}    =     [B] [D] [B] dΩ {d}∫           (1)  

e e e{F}         [K] {d}=              (2) 

where     e eT e e[K]    =     [B] [D] [B] d
Ω

Ω∫           (3) 

and [K]e is called the element stiffness matrix. [D] is the 
constitutive matrix. [B] is called the strain-displacement 
matrix [8]. Note that [B] depends upon the prescribed shape 
functions. In this work, the type of element selected was the 
2-D beam element to model the 3-D bed structure. The 
element stiffness for a beam element is written as [9] 
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                         (4) 
 

Since (1) is the equation of equilibrium for the eth element 

in the local coordinate system, the equation of equilibrium for 
the whole structure is given by assembling the element 
equations of equilibrium. Since the matrices in the equation 
of equilibrium for the whole structure are in global 
coordinates, the matrix in (2) has to transform the local 
coordinate to the global coordinate system. The relationship 
between the local coordinate and the global coordinate can be 
written in terms of the nodal displacement matrix for the eth 
element as  
   { } [ ]{ }e elocal globald    =   T d             (4) 

where [T] is the transformation matrix which consists of the 
direction cosines between the global and local coordinate 
system. At each node for 6 DOFs, equation (4) can be 
rewritten as [9] 
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                        (5) 

where lij is the direction cosine between the local axis xi and 
global axis Xj. Then, the element stiffness and force matrix 
as in (2) for the local coordinate system can be transformed 
to the global coordinate system as follows 

   [ ] [ ]e eTglobal localK    =    T K T⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
         (6) 

and   { } [ ] { }Tglobal localF    =   T F             (7) 

Hence, the equation of equilibrium for the whole structure 
is obtained by assembling the global element equations of 
equilibrium and can be expressed as  
   {F}        [K]{d}=                    (8) 

where {F} is a matrix of external forces, {d} is a matrix of 
nodal displacements and [K] is the global stiffness matrix 
for the structure. Once, the element matrices of the system 
are modeled. To determine the unknown nodal 
displacements of the whole structure, the external forces and 
boundary conditions of the system have to be applied. The 
unknown nodal displacements for the system are obtained 
by solving (8) as follows 

   1{d}        [K] {F}−=                (9) 

Once the nodal displacements are obtained by (9). The 
strain and stress of each element are determined. To 
determine the strain and stress of each element, the process of 
calculating the strain-displacement matrix in each element is 
repeated. Then the strain matrix in each element is obtained 
as follows 
   {ε}   =  [B]e {d}e             (10) 

Then the stress matrix in each element is obtained by  
   {σ}e   =     [D]e{ε}e            (11) 

Note that stresses in each element can be evaluated. To 
determine the stresses in each element, the Von Mises stress 
for 2D case can be used as follows 
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   2 2
1 1 2 2    =      - νσ σ σ σ + σ                 (12) 

Yielding of material occurs when the stress exceeds the 
yield strength of material. Hence, to prevent the failure of 
structure due to yielding, the Von Mises stress is less than the 
yield strength of material and is written as 

σν     ≤      σy                  (13) 

where σy is the yield strength of the material. In cases where 
a safety factor is applied to the design, Equation (13) can be 
rewritten as follows 

   σν     ≤      y

SF
σ                (14) 

where SF is the safety factor. 

B. Buckling Analysis 
This section describes the analysis of a compressed 

member under an axial loading which is called column. The 
strength of column depends upon its geometry i.e. the length 
and cross-section of the column and the modulus of elasticity. 
In general, the column that is long and slender tends to fail by 
buckling rather than by yielding. The column will be 
collapsed when the load P reaches a critical point. This is 
called critical buckling load ( crP ). The critical buckling load 
can be calculated by using Euler equation. Euler equation can 
be given as [10], [11] 

2
cr

2
P Cπ E      
A (L/k)

=    
          (15)

 

where L is the length of column, k is the radius of gyration,  A 
is the cross-section area, E is the modulus of elasticity and C 
is the constant depending upon the end conditions. 

C. Genetic Algorithms 
Genetic Algorithms is a stochastic search method based 

upon the theory of natural selection. It was developed by 
Holland [12] at the University of Michigan between 1960’s 
and 70’s and then Goldberg [13] extended the theoretical 
foundations and applications of GAs. GAs as Evolution 
Algorithms method are famous because it is easy to apply to 
optimization problems and can be seen as a black box method 
[14].  

The search procedure starts with an initial population as 
parents.  The initial population of individual is randomly 
created. Note that weighting the probability of a gene is 
applied for breeding in terms of its fitness. The characteristics 
that give the best solutions are passed on from one generation 
to the next generation. This strategy is called elitism. The 
procedure is repeated until an optimum is achieved. 
Therefore the success of GAs depends upon a population 
consisting of feasible and infeasible points. The Genetic 
operators such as selection, crossover and mutation are 
applied to the parents to create the offspring.  

Strings of the integers are typically used as genes 
represented as design variables. The classical representation 
of real-number design parameters is binary string. Each bit 
position is either “1” or “0”. In order to find the fitness values 
of genes, the strings are to be converted to real values. A 
matrix of binary-string b can be converted to be the decimal 
number xi as follows [15] 

bi l,i u,i l,i N

btx =x +(x -x )
2 -1

            (16) 

     where b is a matrix size 1×Nb having either ‘1’ or ‘0’ as 
the elements, t is a transformation matrix size Nb×1, ti,1 = 
2(Nb-i), xl,i is the lower limit of xi, and xu,i is the upper limit of 
xi.  

As above description, the offspring are created by using 
the genetic operators from parents. The genetic operators 
such as selection, crossover and mutation can be explained as  

D. Selection 
Genes in the current population are to be randomly 

selected so that they will be taken to a mating pool to create 
offspring. The selection of each individual gene for breeding 
is based upon its fitness function value. The probability of the 
sth gene being selected ws can be written as follows [16] 

ws =      

∑
=

gN

i
i

s

f

f

1

              (17) 

where Ng as a number of genes in a population, fi fitness of 
the ith gene and fs is the  fitness of the sth gene. Using (17), if 
the fitness of the best gene is considerably more than the 
average fitness, there will be a risk of self-breeding of the 
best gene producing identical solutions in the next generation 
and that leads to the procedure stalling. To relax the extreme 
domination of some genes, the probability function is 
modified so that after sorting the order of genes based upon 
their fitness. Then the probabilities of the sth gene being 
selected are obtained using the following [16] 

ws =      
1)(NN

2s

gg +
            (18) 

By using Eq. (18), the fitness values always has an 
opportunity 1/(Ng+1) of being selected, whilst the best gene 
always has an opportunity 2/(Ng+1), approximately twice of 
the others. On each generation, not-so-good genes still have 
chances to be selected. 

E. Crossover 
Crossover is an operator to generate offspring from parent 

strings. For a one-point crossing over, two offspring are 
created from a pair of parents by randomly cutting the parents 
into two parts. The offspring are the genes that copy the first 
part of the parent while the second parts are interchanged. 
With the same idea as operating one-point crossover, 
multiple-point crossover can be carried out. 

F. Mutation 
A mutation is an operator which each element in a gene of 

offspring is chosen at random. An element (i.e. “0” or “1”) is 
flipped the value from 0 to 1 or vice versa. An idea of 
mutation is used to prevent the solution which converses to a 
poor local optimum because of the lack of population 
diversity. In general, the mutation is applied with a small 
probability of mutation in the simple GAs.  

Each of these operations (crossover, and mutation) takes 
place with some given probability. Crossover is operated 
with high probability whilst the mutation will have rare 
chances to be operated. Furthermore, an elitist strategy is 
employed by the best gene or elite from each generation 
being directly saved to the next generation, ensuring that the 
best solution is not lost.  
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cross-section is 4.03 cm of the 20th and 39th elements. The 
smallest and largest heights of cross-section are 1.00 cm of 
the 30th and 50th elements and 4.6 cm of the 22nd and 37th 
elements, respectively. The smallest cross-section area is 
1.54 cm2 of the 24th and 43rd elements whereas the largest 
cross-section area is 10.21 cm2 of the 22nd and 37th elements. 
Figure 7 shows the displacement of bed structure when the 
size of cross-section area in each element was analyzed by 
using FEA. The results showed that the maximum 
displacement was 0.20 cm at the 5th node. The maximum 
stress was 194.44 MN/m2 on the 44th element; whilst, the 45th 
element may be damaged by the buckling effect. 

 
Fig. 4 FE model of hospital bed. 

 

 
Fig. 5 Average and best fitness on each generation in Problem I. 

 

 
Fig. 6 Best fitness on each generation in Problem I. 

 
Fig. 7 Displacement of bed structure at optimum in Problem I. 

 
TABLE I  RESULTS OF SEARCHING STRUCTURAL SIZES OF RECTANGULAR 

BEAM ELEMENT IN THE HEIGHT AND WIDTH OF CROSS-SECTION AT MINIMUM 
MASS IN PROBLEM I. 

Element 
No. 

Cross-section Element 
No. 

Cross-section 
Width 

(m) 
Height 

(m) 
Width 

(m) 
Height 

(m) 

1,6 0.0296 0.0170 22,37 0.0222 0.0460 

2,7 0.0210 0.0126 23,36 0.0108 0.0288 

3,5 0.0101 0.0267 24,43 0.0140 0.0110 

4 0.0141 0.0110 25,48 0.0278 0.0167 

8,9 0.0120 0.0258 26,47 0.0279 0.0203 

10 0.0132 0.0150 27,46 0.0125 0.0209 

11,16 0.0256 0.0116 28,45 0.0152 0.0376 

12,15 0.0182 0.0175 29,44 0.0202 0.0218 

13,14 0.0156 0.0231 30,50 0.0165 0.0100 

17,42 0.0292 0.0157 31,49 0.0140 0.0180 

18,41 0.0102 0.0288 32,51 0.0171 0.0143 

19,40 0.0268 0.0101 33,53 0.0107 0.0179 

20,39 0.0403 0.0114 34,52 0.0102 0.0211 

21,38 0.0150 0.0382 35,54 0.0108 0.0237 

  

In the problem I, the result shows the success in searching 
the minimum mass with varying the size of width and height 
in each cross-section subject to displacement, structural 
stress and buckling constraints.  However, the sizes in 
cross-section of element at optimum are too different. It is 
practically difficult to construct. To reduce such a difficulty, 
it should be specified in some size such as 1, 2 or 5 cm etc.  

 

Problem II: Optimization with specifying sizes of 
cross-section of rectangular beam.  

Similar to Problem I, the size of width and height in each 
cross-section of rectangular beam is used only 1, 2 and 5 cm. 
Then, the optimization problem can be expressed as follows  
Minimize  f(x) = the mass of 54-beam structure 

Subject to             
 1 – Ri            ≤   0;  i = 1, …, 54 

      λi – 1             ≤   0;  i = 1, …, 54 

      - (1 - jν
0.01

)   ≤   0;  j = 1, …, 34   

    and   xk = 0.01, 0.03 or 0.05;  k = 1, 2, …, 108 
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