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The Sizing Optimization of Hospital Bed Structure for
Independently Supporting Left and or Right Leg Using
Genetic Algorithms

Rung Kittipichai and Atthaphon Ariyarit

Abstract—This paper deals with the new method to design
the optimum design for hospital bed, which can support the left
and or right leg for patient‘s leg splint. GAs as an optimization
method was selected to search the minimum mass of bed
structure whilst fulfilling some structure constraints such as
stress, displacement and buckling. The GAs and FE code were
developed to analyze the structure in MATLAB. Two
optimization problems were set to search the minimum mass. In
Problem I, the height and width of cross-section in each element
was varied from 1 to 5 cm. Whilst the height and width of
cross-section in Problem II were selected from 1, 2 and 5 cm.
The minimum masses achieved from both problems were 57.31
and 49.25 kg, respectively. The minimum masses obtained from
Problem II were more than that from Problem I but it
practically made the bed structure easier. Therefore, this paper
demonstrates that it is possible to design the hospital bed for
independently supporting left and or right leg by using the
concepts of GAs combined with FEM to search the optimum
mass.

Index Terms—finite element, Genetic Algorithms, hospital
bed, optimization.

I. INTRODUCTION

At present, there are many types of the hospital bed with
various functions, for example, it can lift the head section
and/or leg section of the bed as shown in Fig. 1 or it can
change between bed and chair as shown in Fig. 2.
Unfortunately, the hospital bed cannot lift either a left leg or a
right leg. That means when the patient’s left leg or right leg is
broken, the hospital bed need to lift both legs. It cannot lift
independently. This paper will focus on the hospital bed
design for independently separating the left and or right leg.

The structure of the hospital bed is typically complicate
and heavy. This paper proposes the design method to reduce
the mass of the bed structure. To reduce the bed mass, the
optimization technique including the Finite Element Analysis
(FEA) can be employed. In 1997, Jenkins [1] demonstrated
the success of using the optimization technique with Genetic
Algorithms (GAs) to reduce the sizes of multistory frame for
the optimum mass. In 1998, Annicchaiarico and Cerrolaza [2]
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applied GAs including 2-D finite element shapes to a
three-dimensional 25-bar truss tower to obtain the optimum
mass subject to the stress and displacement and buckling
constraints. Later, Coello and Christiansen [3] proposed the
new GA-based multi-objective optimization problems to
minimize mass and to meet the maximum displacement and
stress of the structure using the cross-section area of each
element as the design variables for a 25-bar truss tower
similar to Annicchaiarico and Cerrolaza’s work in 2000. In
2001, Deb and Gulati [4] applied the real-coded GAs to 2-D
and 3D trusses to achieve minimum mass subject to stress,
deflection and kinematic stability constraints.

Fig. 1 General hospital bed. [5]

Fig. 2 Hospital bed combined bed and chair. [6]

This paper will optimize the structural mass of the hospital
bed for independently separating left and or right leg by using
GAs combined with 2-D beam element in FEA. The results of
FEA such as stress, deflection, and buckling are added in
GAs procedure as the constraints to find the structural size of
each element. All are done and developed the code in
MATLAB program
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II. THEORY OF ANALYSIS

This section explains the theory of Finite Element Method
(FEM) to apply to the bed structure to find the displacement,
stress and buckling of the structure. And then GAs is
demonstrated how to apply FE including GAs algorithm.

A. Finite Element Method for Structural Analysis

The Finite element method is a numerical procedure for
analyzing elastic structures. The structure is divided into a
number of simple shaped elements called finite elements.
Each element is interconnected at nodes. If the structure is
under applied forces or loads, the displacement in each node
is obtained by formulating the properties of each element
then assembling all of the elements to obtain a global Finite
Element (FE) model. Once the FE model is created, the
equations of equilibrium can be solved by using the computer
to get the displacement of each node after nodal forces or
loads and boundary conditions are applied.

There are many methods to model elastic structures. One
key method used to formulate FE model is the principle of
minimum potential energy (PMPE). Hamilton’s principle is
an approach which can be used to obtain the PMPE [7].
Therefore, the equation of equilibrium for the ¢™ element in
the local coordinate system can be expressed as follows
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and [K]® is called the element stiffness matrix. [D] is the
constitutive matrix. [B] is called the strain-displacement
matrix [8]. Note that [B] depends upon the prescribed shape
functions. In this work, the type of element selected was the
2-D beam element to model the 3-D bed structure. The
element stiffness for a beam element is written as [9]
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Since (1) is the equation of equilibrium for the ™ element
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in the local coordinate system, the equation of equilibrium for
the whole structure is given by assembling the element
equations of equilibrium. Since the matrices in the equation
of equilibrium for the whole structure are in global
coordinates, the matrix in (2) has to transform the local
coordinate to the global coordinate system. The relationship
between the local coordinate and the global coordinate can be
written in terms of the nodal displacement matrix for the ¢™
element as

{dlocal}e [T]{dglobal}e

where [T] is the transformation matrix which consists of the
direction cosines between the global and local coordinate
system. At each node for 6 DOFs, equation (4) can be
rewritten as [9]
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where I;; is the direction cosine between the local axis x; and
global axis Xj. Then, the element stiffness and force matrix
as in (2) for the local coordinate system can be transformed
to the global coordinate system as follows

[Kglobal:r [T]T |:Klocal:|C [T]
{Fglobal} [T]T {Flocal}

Hence, the equation of equilibrium for the whole structure
is obtained by assembling the global element equations of
equilibrium and can be expressed as

{F} [K]{d} ®)

where {F} is a matrix of external forces, {d} is a matrix of
nodal displacements and [K] is the global stiffness matrix
for the structure. Once, the element matrices of the system
are modeled. To determine the unknown nodal
displacements of the whole structure, the external forces and
boundary conditions of the system have to be applied. The
unknown nodal displacements for the system are obtained
by solving (8) as follows

{d} )

Once the nodal displacements are obtained by (9). The
strain and stress of each element are determined. To
determine the strain and stress of each element, the process of
calculating the strain-displacement matrix in each element is
repeated. Then the strain matrix in each element is obtained
as follows

(6)

and

(7

[K]{F}

{e} = [BI'{d}* (10)
Then the stress matrix in each element is obtained by
{o}* =  [DI{g}° )

Note that stresses in each element can be evaluated. To
determine the stresses in each element, the Von Mises stress
for 2D case can be used as follows
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O

= Jo’-0,0,+0, (12)
Yielding of material occurs when the stress exceeds the
yield strength of material. Hence, to prevent the failure of
structure due to yielding, the Von Mises stress is less than the
yield strength of material and is written as
o, < Oy

\%

(13)

where o, is the yield strength of the material. In cases where
a safety factor is applied to the design, Equation (13) can be
rewritten as follows

Sy

Oy ¥
SF

(14)

where SF is the safety factor.

B. Buckling Analysis

This section describes the analysis of a compressed
member under an axial loading which is called column. The
strength of column depends upon its geometry i.e. the length
and cross-section of the column and the modulus of elasticity.
In general, the column that is long and slender tends to fail by
buckling rather than by yielding. The column will be
collapsed when the load P reaches a critical point. This is

called critical buckling load (P, ). The critical buckling load
can be calculated by using Euler equation. Euler equation can
be given as [10], [11]
P, Cr’E
A (L/k)?

A (15)

where L is the length of column, k is the radius of gyration, A
is the cross-section area, E is the modulus of elasticity and C
is the constant depending upon the end conditions.

C. Genetic Algorithms

Genetic Algorithms is a stochastic search method based
upon the theory of natural selection. It was developed by
Holland [12] at the University of Michigan between 1960’s
and 70’s and then Goldberg [13] extended the theoretical
foundations and applications of GAs. GAs as Evolution
Algorithms method are famous because it is easy to apply to
optimization problems and can be seen as a black box method
[14].

The search procedure starts with an initial population as
parents. The initial population of individual is randomly
created. Note that weighting the probability of a gene is
applied for breeding in terms of its fitness. The characteristics
that give the best solutions are passed on from one generation
to the next generation. This strategy is called elitism. The
procedure is repeated until an optimum is achieved.
Therefore the success of GAs depends upon a population
consisting of feasible and infeasible points. The Genetic
operators such as selection, crossover and mutation are
applied to the parents to create the offspring.

Strings of the integers are typically used as genes
represented as design variables. The classical representation
of real-number design parameters is binary string. Each bit
position is either “1” or “0”. In order to find the fitness values
of genes, the strings are to be converted to real values. A
matrix of binary-string b can be converted to be the decimal
number x; as follows [15]
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bt
2% .1
where b is a matrix size 1XN, having either ‘1’ or ‘0’ as
the elements, t is a transformation matrix size NyXI, t;; =
2(Nb"), xy; is the lower limit of x;, and x,,; is the upper limit of

(16)

X=X (XX 5)

Xj.

As above description, the offspring are created by using
the genetic operators from parents. The genetic operators
such as selection, crossover and mutation can be explained as

D. Selection

Genes in the current population are to be randomly
selected so that they will be taken to a mating pool to create
offspring. The selection of each individual gene for breeding
is based upon its fitness function value. The probability of the
s" gene being selected w, can be written as follows [16]

s

N

D h

i=1
where N, as a number of genes in a population, f; fitness of
the i™ gene and f, is the fitness of the s gene. Using (17), if
the fitness of the best gene is considerably more than the
average fitness, there will be a risk of self-breeding of the
best gene producing identical solutions in the next generation
and that leads to the procedure stalling. To relax the extreme
domination of some genes, the probability function is
modified so that after sorting the order of genes based upon
their fitness. Then the probabilities of the s™ gene being
selected are obtained using the following [16]

2s

N, (N, +1)

By using Eq. (18), the fitness values always has an
opportunity 1/(Ny+1) of being selected, whilst the best gene
always has an opportunity 2/(Ny+1), approximately twice of
the others. On each generation, not-so-good genes still have
chances to be selected.

(17)

W =

(18)

W =

E. Crossover

Crossover is an operator to generate offspring from parent
strings. For a one-point crossing over, two offspring are
created from a pair of parents by randomly cutting the parents
into two parts. The offspring are the genes that copy the first
part of the parent while the second parts are interchanged.
With the same idea as operating one-point crossover,
multiple-point crossover can be carried out.

F. Mutation

A mutation is an operator which each element in a gene of
offspring is chosen at random. An element (i.e. “0” or “17) is
flipped the value from 0 to 1 or vice versa. An idea of
mutation is used to prevent the solution which converses to a
poor local optimum because of the lack of population
diversity. In general, the mutation is applied with a small
probability of mutation in the simple GAs.

Each of these operations (crossover, and mutation) takes
place with some given probability. Crossover is operated
with high probability whilst the mutation will have rare
chances to be operated. Furthermore, an elitist strategy is
employed by the best gene or elite from each generation
being directly saved to the next generation, ensuring that the
best solution is not lost.
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G. Penalty function

Genetic Algorithms is classically employed to solve
unconstrained optimization problem. To deal such a problem,
the constrained optimization problem has to be transformed
to an unconstrained optimization problem by adding a
penalty term of constraints to the objective function. Static
penalty is a technique which the penalized objective function
consists of the unpenalized objective function and a penalty
term as follows

m+p

fp(x) =f(x)+ Z Cidik

where
d =0, if constraint 2,(x) is satisfied for i=1,...,m

(19)

d =g(x), if constraint g.(x) is violated for i=1,...,m
d, =|h (x)|, if constraint 4 (x) is violated for i=m+1,...,p
C, is the penalty coefficients corresponding to i"

constraint and k is normally defined as 1 or 2. Therefore,
Equation (19) is based upon the number of constraint
violations. The algorithm of GAs including FEA is showed in
Fig. 3.

Start |

Specify limit
in design

L | )
Generate
initial

Eel_aliun

-

K=1

: L |

Finite Elemeant
| Analysis

combined with
|Penart Function

L |
na

Selection

: & yes
< K-::N/- = Best Solution

¥ 1

K=K+1

Crossover | End

——
L | .

M
Generation

| Mutation

L

| Finite Element
Analysis

| combined with

Penalty Function

Fig. 3 Algorithm of GAs including FE Procedure.

Elitism

III. PROBLEM AND RESULT

The goal of the problem is to reduce the structural mass
of a hospital bed whilst fulfilling some structure constraints.
Fig. 4 shows a structural model of the hospital bed for
independently supporting left and or right leg. The bed
structure was modeled by using the concept of the beam
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element in FE process. The bed size was the width of 0.8 m
and the length of 2 m. The FE model consists of 54 beam
elements for rectangular bar with 38 nodes. The 54 beam
elements were treated as design variables of the optimization
problem. The bed structure was made of steel alloy 4140 [17].
The material properties of such steel were the density of 7850
kg/m’, the modulus of elasticity of 207 GN/m? and the yield
strength of 655 MN/m”. The bed structure can support the
vertical load as the patient or human mass and the horizontal
load as thrust load. Such loads were treated as the distribution
loads as shown in Fig. 4. The sum of vertical and horizontal
loads were 4.2 and 2.5 kN, respectively. The node of 2, 3, 10
and 12 was supported and transferred force to the structural
base.

Problem I: Optimization with varying sizes of cross-section
of rectangular beam.

To solve the optimization problem using the GAs
including FE, all codes were developed and run in MATLAB
program. The mass of bed structure was minimized by
reducing the size of cross-section area in each element. The
search limits of the width and height in each cross-section
area of the element was defined between 1 and 5 cm. For the
displacement constraint, the displacement in each node of
structure was allowed less than 1 cm. Therefore, the
optimization problem may be written as follows

Minimize f(x) = the mass of 54-beam structure
Subject to
1-R; <0,i=1,..,54
AM-1 <0,i=1,...,54
-2y < 0;j=1,..,34
0.01

and 0.01 < x, < 0.05; k=1,2,...,108

where R; is the ratio of the applied axial stresses to the
allowable stress in each beam, A is the ratio of stress due to
axial load to the critical stress in the compressed bar. vjis the
displacement in y-direction at each nodal point, and xy is the
design variable of the width and height in each cross-section
of the i™ rectangular beam. The safety factor applied to the
structures was set to 2. In GAs strategy, design variables were
coded to be binary strings. Each design variable contains 10
binary bits and the number of population in each generation
was set to 500. The number of generation was set to 1500.
The probabilities of operating crossover and mutation on
each generation were 0.8 and 0.2, respectively. One elite gene
was saved to the new generation, and a new blood that was
created randomly was also included in the new generation.
The results of searching the minimum mass in the Problem
I are shown in Fig. 5 and 6. Figure 5 shows the graph of the
relation between the average and best fitness against the
number of generation. Whilst Figure 6 shows the zoom of
graph in Fig. 5 which considers only the best fitness against
the number of generation. The results show that the minimum
mass is 49.25 kg whilst the buckling constraint at the
minimum mass is accepted. Table I demonstrates the results
of searching the structural sizes of rectangular beam element
in the height and width of cross-section at the minimum mass
subject to stress, displacement and buckling constraints. As
shown in Table I, the smallest width of cross-section is 1.01
cm of the 3™ and 5™ elements. Whilst the largest width of



International Journal of Modeling and Optimization, Vol. 1, No. 2, June 2011

cross-section is 4.03 cm of the 20™ and 39" elements. The
smallest and largest heights of cross-section are 1.00 cm of
the 30" and 50" elements and 4.6 cm of the 22" and 37"
elements, respectively. The smallest cross-section area is
1.54 cm?® of the 24™ and 43™ elements whereas the largest
cross-section area is 10.21 cm?” of the 22" and 37™ elements.
Figure 7 shows the displacement of bed structure when the
size of cross-section area in each element was analyzed by
using FEA. The results showed that the maximum
displacement was 0.20 cm at the 5" node. The maximum
stress was 194.44 MN/m? on the 44" element; whilst, the 45"
element may be damaged by the buckling effect.

150N

1SON15ON

Fig. 4 FE model of hospital bed.
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Fig. 5 Average and best fitness on each generation in Problem I.
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Fig. 6 Best fitness on each generation in Problem I.

Fig. 7 Displacement of bed structure at optimum in Problem I.

TABLE I RESULTS OF SEARCHING STRUCTURAL SIZES OF RECTANGULAR
BEAM ELEMENT IN THE HEIGHT AND WIDTH OF CROSS-SECTION AT MINIMUM

MASS IN PROBLEM 1.
Element Cross-section Element Cross-section
No. Width Height No. Width Height
(m) (m) (m) (m)
1.6 0.0296 0.0170 2237 0.0222 0.0460
27 0.0210 0.0126 2336 0.0108 0.0288
3.5 0.0101 0.0267 2443 0.0140 0.0110
4 0.0141 0.0110 2548 0.0278 0.0167
8.9 0.0120 0.0258 2647 0.0279 0.0203
10 0.0132 0.0150 27.46 0.0125 0.0209
11,16 0.0256 0.0116 2845 0.0152 0.0376
12,15 0.0182 0.0175 29,44 0.0202 0.0218
13,14 0.0156 0.0231 3050 0.0165 0.0100
17.42 0.0292 0.0157 31.49 0.0140 0.0180
18.41 0.0102 0.0288 3251 0.0171 0.0143
19,40 0.0268 0.0101 33.53 0.0107 0.0179
20,39 0.0403 0.0114 34.52 0.0102 0.0211
2138 0.0150 0.0382 35.54 0.0108 0.0237

In the problem I, the result shows the success in searching
the minimum mass with varying the size of width and height
in each cross-section subject to displacement, structural
stress and buckling constraints. However, the sizes in
cross-section of element at optimum are too different. It is
practically difficult to construct. To reduce such a difficulty,
it should be specified in some size such as 1, 2 or 5 cm etc.

Problem II: Optimization with specifying sizes of
cross-section of rectangular beam.

Similar to Problem I, the size of width and height in each
cross-section of rectangular beam is used only 1, 2 and 5 cm.
Then, the optimization problem can be expressed as follows

Minimize f(x) = the mass of 54-beam structure
Subject to
1-R; < 0;i=1,...,54
A1 < 0;1=1,...,54
~(1-iy < 0;j=1,...,34
0.01

and x,=0.01,0.030r0.05; k=1,2, ..., 108
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where xy is the design variable of the width and height in each
cross-section of the i™ rectangular beam. In GAs strategy,
design variables were coded to be binary strings. Each design
variable contained 10 binary bits and the number of
population in each generation was set to 200. The number of
generation was set to 500. The probabilities of crossover and
mutation on each generation were set to 0.8 and 0.2,
respectively. The elitism was still used.

the best and average fitness on each generation

—+—best value
—+ —average value
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Fig. 8 Average and best fitness on each generation in Problem II.
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Fig. 9 Best fitness on each generation in Problem II.

The results of searching the minimum mass in Problem II
are shown in Fig. 8 and 9. The relation between average and
best fitness on each generation is shown in Fig. 8 whereas
Figure 9 shows the zoom of graph in Fig. 8 to consider only
the best fitness on each generation. The mass at optimum was
57.31 kg whereas the buckling constraint at the minimum is
accepted. The results of searching the structural sizes of
rectangular beam element in the height and width of
cross-section at minimum mass are shown in Table II. The
smallest and largest width of cross-section are 1 and 5 cm,
respectively. The smallest and largest height of cross-section
are 1 and 5 cm, respectively. Figure 10 shows the
displacement of structure when the size of cross-section in
each element was analyzed. The result demonstrated that the
maximum displacement was given as 0.15 cm at the 7" node.
The maximum stress was 236.95 MN/m® on the 3™ element.
Whilst the 17™ element can be damaged by buckling.

From the results in each problem, the minimum mass in
Problem I is less than that in Problem II as 8.06 kg. This
results shows that the structural mass is increased because the
sizes of height and width of cross-section are selected from
three defined sizes. This idea will make the structural mass
increase; nevertheless, building the bed structure is easier.

=== Driginal structure
Displaced structure

Fig. 10 Displacement of bed structure at optimum in Problem II.

TABLE II RESULT OF SEARCHING STRUCTURAL SIZES OF RECTANGULAR
BEAM ELEMENT IN THE HEIGHT AND WIDTH OF CROSS-SECTION AT MINIMUM

MASS IN PROBLEM II.
Element Cross-section Element Cross-section
No. Width Height No. Width Height
(m) (m) (m) (m)
1,6 0.02 0.01 22,37 0.05 0.02
2,7 0.01 0.01 23,36 0.02 0.02
3,5 0.05 0.02 24,43 0.01 0.02
4 0.01 0.02 25,48 0.02 0.02
8,9 0.02 0.02 26,47 0.02 0.05
10 0.01 0.01 27,46 0.02 0.01
11,16 0.01 0.02 28,45 0.02 0.05
12,15 0.05 0.02 29,44 0.02 0.02
13,14 0.02 0.02 30,50 0.02 0.02
17,42 0.01 0.01 31,49 0.01 0.02
18,41 0.02 0.02 32,51 0.01 0.01
19,40 0.02 0.05 33,53 0.02 0.02
20,39 0.02 0.01 34,52 0.02 0.01
21,38 0.02 0.02 35,54 0.01 0.02
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IV. CONCLUSIONS

This paper proposed the idea of designing the hospital bed
for independently separating left and or right leg. Due to the
structure of bed is typically complicate and heavy, GAs as an
optimization technique was used to reduce the structural
mass of bed whilst fulfilling some structure constraints. To
analysis the bed structure, FE code was developed and
combined with GAs code by using MATLAB program. Two
optimization problems were set to search the minimum mass
of structure with varying and selecting the sizes of width and
height in cross-section of each element due to the difficulty in
building the bed in the real lift. The results showed the
success in searching the minimum mass whilst the
displacement of each node and the stress and buckling in each
element at the optimum were accepted. Therefore, there is the
possibility in designing the hospital bed for independently
supporting left and or right leg by using GAs combined with
FEM to search the minimum mass.
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