


Abstract—Today reverse engineering poses a serious threat

to the protection of intellectual property rights (IPR) of

software developers. The incidents of software tampering and

piracy have become commonplace. It is possible for software

pirates to extract a piece of code and incorporate it into their

own programs with considerable ease. Such cases are even more

rampant in the web-based industry since it is teeming with

programs in easily decompilable formats. In this paper, we

target java applications which are available as Java class files.

Java bytecode is platform independent and makes Java

executables highly susceptible to being reverse engineered.

Obfuscation is a technique to protect against this threat. This

paper presents a level-based organization of code obfuscation

for employing effective software protection. The authors

propose incorporation of obfuscation as a means to improve

MIQ of software applications. Finally, the paper demonstrates

the working of a code obfuscator that operates on java files and

produces obfuscated versions in two stages.

Index Terms—Intellectual property rights, machine

intelligence quotient (MIQ), obfuscation, reverse engineering,

tamper-proofing, watermarking.

I. INTRODUCTION

Today Web-based services have completely changed the

industrial scenario. More and more companies are expanding

their service offerings via the global portal i.e. the World

Wide Web (www) to increase their customer base. The

software industry with its evolving service capability also

aims at bringing a number of services online. In fact,

e-Governance is seen as one of the most viable solutions for

improving the economic condition of the country.

As online computing and querying becomes pervasive,

concerns about data protection and security have taken on

new urgency [1]. Unauthorized users and clients should not

be able to tamper with the program codes. What makes

securing data difficult is that it is not static, but manipulated

in a networked environment. Using reverse engineering,

malicious parties can steal the intellectual property associated

with such code with relative ease. To address this issue, a

number of techniques have been proposed. Prominent among

them are watermarking, tamper-roofing and obfuscation [2].

Obfuscation has become a trend in developing software

modules for IPR protection. In this paper, we describe the

need for employing effective software protection and

propose a level-based organization of code obfuscation.

The remainder of this paper is structured as follows.

Section II describes the backgrounds for code obfuscation.

Manuscript received August 29, 2012; revised September 29, 2012.

Priyanka Singh is with Accenture Services Pvt. Ltd. (e-mail:

priyanka.singh059@gmail.com).

Section III discusses MIQ (Machine Intelligence Quotient) as

a new software evaluation measure and introduces

obfuscation as a MIQ parameter. Section IV proposes a

three-level code obfuscation approach for achieving high

degree of software protection. The implementation of our

code obfuscator is illustrated in Section V. The paper

concludes in Section VI.

II. BACKGROUND

A. Software Engineering

The advent of powerful decompilers has facilitated

remarkably faster and easy source code extraction, thus

exposing intellectual property to potential security threats.

Consequently, software protection has become a prime area

of interest. While it is believed that complete protection of

software is an unattainable goal, recent researches have

shown that protection can be achieved to a large extent.

Software protection techniques are aimed at defending the

intellectual property of the software against various types of

attacks. The intellectual property can be the software design,

data contained in the software or the algorithm. Basically

three types of attacks on the intellectual property contained in

software and their corresponding defenses are identified. A

defense against reverse engineering is obfuscation, a process

that renders software unintelligible but still functional. A

defense against software piracy is watermarking, a process

that makes it possible to determine the origin of software. A

defense against tampering is tamper proofing, so that

unauthorized modifications to the software will result in non

functional code [2].

B. Reverse Engineering

In the software world reverse engineering means taking an

application or program for which source code and

documentation is not available and attempting to recover

details regarding its design and implementation [3]. Reverse

engineering is related to several aspects of software security.

It is used to understand how a program performs some action

and to bypass protection. Hence it is necessary to protect the

software against such attacks and code obfuscation is a

promising defense mechanism.

C. Code Obfuscation

The code obfuscation [2], [4] problem is formally stated as

follows:

Given a set of obfuscating transformations T={T1

,T2,…Tn} and a program P consisting of source code

objects(classes, methods, statements, etc) {S1, S2.,…Sk} ,find

a new program P‟={…,S‟j= Tj(Sj),…} such that:

Code Obfuscation for Effectively Securing Data in the

Web-Based Industry

Priyanka Singh, Vriti Sidana, Kanu Priya Aggarwal, A. B. Patki, and R. C. Meharde

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

708DOI: 10.7763/IJMO.2012.V2.216

 P‟ has the same observable behavior as P, i.e. the

transformations are semantic preserving.

 The obscurity of P‟ is maximized, i.e. understanding

and reverse engineering P‟ will be strictly more time

consuming than understanding and reverse

engineering P.

 The resilience of each transformation Ti(Sj) is

maximized , i.e. it will be either difficult to construct

an automatic tool to undo the transformations or

executing such a tool will be extremely time

consuming.

 The cost (the execution time/space penalty incurred

by the transformation) of P‟ is etc.

III. IMPROVING MIQ OF SOFTWARE PACKAGES

Machine Intelligence Quotient (MIQ) has long been used

as an evaluation measure for Human-Machine Cooperative

systems [5]. However, until recently, no attempt had been

made to measure software intelligence. To assess software

products on the basis of their intelligence, authors [6]

proposed an MIQ-based evaluation methodology for COTS

(Commercial Off-the shelf) software components.

A. Machine Intelligence Quotient (MIQ)

The machine intelligence quotient (MIQ) is a measure to

assess the intelligence of an autonomous system. Any index,

numerical or linguistic framework indicating the degree of

autonomy of an intelligent agent can be regarded as MIQ

quantification.

MIQ can be considered as a union of machine control

intelligence (Mc) and machine interface intelligence (MF) [6]

as

 M = Mc + MF

Control intelligence is composed of three control abilities

to manage three different events that occur from the

environment - known events, uncertain events and

exceptional events. Interface intelligence indicates

intelligence degree needed from human when human and

machine exchange information of plant states or control

commands.

B. Obfuscation as MIQ Parameter

In context of software applications, known events

comprise legalized software use without failure. The

uncertain and exceptional events might include:

 erratic software behavior

 attacks by malicious agents

 attacks by malicious hosts

 attempts to reverse engineer it back into the source

code

We propose incorporation of obfuscation as a means to

improve MIQ of software applications. One of the greatest

challenges remains the lack of analysis techniques, and

metrics for evaluating and comparing the strength of various

software protection techniques [7]. MIQ evaluation measure

can be applied to measure the effectiveness of software

protection tools.

IV. LEVEL BASED ORGANIZATION OF CODE OBFUSCATION

We aim to incorporate an enhanced code obfuscating

security feature in software at three levels (as illustrated in

Fig. 1)

Level 1: Incorporating tamper detection capability in the

program. The program should be able to show its status

(whether an attempt has been made to change it or not)

whenever required.

Level 2: The program should display tamper resistance

(armoring) and attempt to shield itself in the face of

tampering.

Level 3: The program obfuscates itself dynamically

whenever an attempt is made to decompile or change it. This

dynamic obfuscation should be random (changing function

names, classes, interfaces etc) so that the opponent cannot

draw any kind of link between the components.

Fig. 1. Implementing software security at three levels.

A software program developed so as to include this

security feature will not only obscure code but also employ

self-defence against unauthorized access.

V. SOFTWARE IMPLEMENTATION

We have designed a code obfuscator using Java [8] for

Windows platform that works in two stages.

STAGE 1: The obfuscator accepts the candidate java file

(to be obfuscated) as input and outputs an obfuscated version

after removing comments and indentations from the program.

This obfuscated version is written as a new java file in the

target folder while the original file remains unchanged. Fig.

2. gives a block diagram representation of Stage 1 obfuscator.

STAGE 2: The obfuscator accepts the candidate java file

(to be obfuscated) and a class in it as inputs and obfuscates

the following fields of the input class –

1) Declared methods

2) Declared fields

3) Interfaces implemented by the class

4) Nested classes

The above fields are changed to random integers and the

obfuscated version is printed as output. The obfuscated

version is written as a new java file in the target folder while

the original file remains unchanged. Fig. 3. illustrates this.

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

709

Fig. 2. Figure depicting inputs and outputs of Stage 1 obfuscator.

Fig. 3. Figure depicting inputs and outputs of Stage 2 obfuscator.

A. Working Illustration

Example 1 (Stage 1): When the sample java program in

Figure 4 is input to Stage 1 obfuscator, an obfuscated version

is output as in Figure 5.

Fig. 4. Input java program (Stage 1 Obfuscator)

Fig. 5. Output java program (Stage 1 Obfuscator)

Example 2 (Stage 2): When the sample java program and

its class in Figure 6 are fed as inputs to Stage 2 obfuscator, an

obfuscated version is output as in Figure 7.

Fig. 6. Input java program (Stage 2 Obfuscator)

 Fig. 7. Output java program (Stage 2 Obfuscator)

VI. CONCLUSIONS AND FUTURE WORK

Obfuscation is proposed as a MIQ parameter for software

products. The authors propose a level-based approach to

effectively secure software modules against potential

security threats. The paper also demonstrates the working of

a code obfuscator that operates on java files and produces

obfuscated versions in two stages.

The existing obfuscation schemes are applied to programs

in a static manner. There is no technique available to

obfuscate a piece of code dynamically in the face of an attack.

We strive to realize our proposed level-based approach by

imparting dynamic decision-making ability to the software.

Darwinian evolution accounts for the behavior of naturally

occurring intelligent entities and can be used to guide the

class circle

{ //start of class circle

 double a,b,rad; //declaration of variables

 circle(double x,double y,double radius)

 { //start of constructor

a=x;

b=y;

rad=radius;

}

 circle(circle c)//single arguement constructor

{

a=c.a;

 b=c.b;

rad=c.rad;

}

void show()//function to display the value of variables

{

System.out.println("The value of the parameters are :");

 System.out.println("a = "+a+" b = "+b+" radius =

"+rad);

}

}// end of class circle

class circle{ double a,b,rad; circle(double x,double

y,double radius){ a=x; b=y; rad=radius; }circle(circle

c){ a=c.a; b=c.b; rad=c.rad; } void show() {

System.out.println("The value of the parameters are :");

System.out.println("a = "+a+" b = "+b+" radius =

"+rad); }}

Person()

. . .

private String firstname;

private String lastname;

public String getFirstname() {

return firstname;

}

public void setFirstname(String firstname) {

this.firstname = firstname;

}

public String getLastname() {

return lastname;

}

public void setLastname(String lastname) {

this.lastname = lastname;

public static void main(String a[])

{

p.meth1();

p.meth2();

p.fun1();

. . .

Person()

{

. . .

 private String __19289;

 private String __71567;

 public String __470() {

 return __19289;

 }

 public void __40826(String __19289) {

 this.__19289 = __19289;

 }

 public String __74317() {

 return __71567;

}

 public void __41381(String __71567) {

 this.__71567 = __71567;

public static void main(String a[])

{

p.__14058();

p.__71200();

p.__71540();

. . .

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

710

creation of artificial entities that are capable of intelligent

behavior [9]. Our efforts are directed towards stimulating an

evolutionary process in software programs so that subsequent

obfuscated versions have increased MIQ.

REFERENCES

[1] G. Naumovich and N. Memon, "Preventing piracy, reverse

engineering, and tampering," IEEE Computer, vol. 36, no. 7, pp. 64-71,

July 2003.

[2] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and

obfuscation - tools for software protection,” IEEE Trans on Software

Engineering, vol. 28, no. 8, pp. 735–746, Aug. 2002.

[3] E. Eilam, Reversing:Secrets of Reverse Engineering, 1st ed. USA:

Wiley, 2005.

[4] K. Fukushima, S. Kiyomoto, and T. Tanaka, “ An Obfuscation Scheme

Using Affine Transformation and Its Implementation,” in IPSJ

Journal, vol. 47, no. 8, Aug. 2006, pp. 2556–2569.

[5] H. J. Park, B. K. Kim, and K. Y. Lim ,”Measuring the machine

intelligence quotient (MIQ) of human machine cooperative systems,”

IEEE trans on Systems, machines and cybernetics-Part A, Systems and

Humans, vol. 31 , no. 2, March 2001.

[6] P. Singh, V. Sidana, K. P. Aggarwal, N. Verma, S. Verma, and A. B.

Patki , “Introducing Machine Intelligence quotient as a new COTS

Evaluation measure,” in proc. 4th National conference, INDIAcom

2010.

[7] P. C. Van Oorschot, "Revisiting Software Protection," in proc. 6th

International Conf. Information Security (ISC 03), LNCS 2851,

Springer-Verlag, 2003, pp. 1–13.

[8] H. Schildt, The Complete Reference Java 2, 5th ed. New Delhi, India:

Tata McGraw-Hill, 2002. ch. 17, pp. 546-577.

[9] D. B. Fogel and L. J. Fogel, “Evolution and Computational

Intelligence,” in Proc. IEEE , Neural Networks, vol. 4, pp. 1938-1941,

Dec. 2005.

Ms. Priyanka Singh obtained her B.Tech from Maharaja

Agrasen Institute of Technology, GGSIPU, New Delhi in

2011 in Computer Science. During her engineering, she

did her summer internship at the Department of

Information Technology, Government of India, New

Delhi and co-authored a research paper “Introducing

Machine Intelligence Quotient as a new COTS

Evaluation measure” with her team. The paper was

published in the proceedings of the 4th National

conference, INDIAcom 2010.

 During 2009-2011, she did exploratory work in software obfuscation with

emphasis on effectively securing web-based Java files. She has undergone

Green Field Training at Accenture Services Pvt. Ltd., India during Dec

2011–Feb 2012 where she was trained in Functional Testing, Test Data

Management, Testing Automation and Testing tools primarily Quality

Centre (QC) and Quick Test Professional (QTP). She is currently working as

an Associate Software Engineer at Accenture Services Pvt. Ltd., Chennai.

Ms. Vriti Sidana completed her graduation from

Maharaja Agrasen Insitute of Technology, GGS

Indraprastha University, New Delhi in 2011 in

Computer Science and Engineering. During her

graduation she worked as a trainee at the Department of

Information Technology, Ministry of Communications

and IT, New Delhi during the period June-July‟09 and

June-July‟10. The internship at the Ministry was her

foray into the research field. She was an integral part of the team which

worked on introducing Machine Intelligence Quotient(MIQ) as a measure of

software intelligence. The team got their research paper published on the

same topic in BVICAM.

 She worked on a project –„Code obfuscation for effectively securing data

in the web based industry‟ during 2009-2010. She is currently working as a

Mobile application developer who specialises in iPhone/iPad applications at

MapXL Inc., New Delhi. Her application, World Atlas for iPad, has got the

best rating at the apple application store in the reference category. She has

worked on various other applications like city guides, quizzes and India

Atlas.

Ms. Kanu Priya Aggarwal completed her graduation

from Maharaja Agrasen Institute of technology,

GGSIPU , New Delhi in 2011 in Computer Science

and Engineering. During her graduation she did her

training at the Central Government Office , New Delhi

and was an integral part of the team which was

successful in publishing a research paper on „Machine

Intelligence Quotient‟ in BVICAM National

Conference.

 She worked on the project - „Code Obfuscation for effectively securing

data in the web based industry‟ during 2009-2011. She has undergone

extensive training program at Infosys Limited, Mysore, India in Computer

Sciences during Aug – Dec 2011 where she was trained in languages like

java , .Net, Databases and Software development lifecycle. She is currently

working as a Software Engineer at Infosys Limited, Chandigarh . Her current

work areas include Content Management and Portals , FAST and Filenet.

Mr. A. B. Patki obtained his M Tech from Indian

Institute of Technology (IIT), Kharagpur in 1975 with

specialization in computers. He had worked as faculty in

Government College of Engineering, Amravati,

Maharashtra, during 1972-73. He also worked as Project

Officer at IIT, Kharagpur during 1975-77 on

hardware/software R&D projects. Since March 1977, he

was employed with Department of Information

Technology (erstwhile Department of Electronics),

Government of India and superannuated in March 2010 as Senior

Director/Scientist-G & HoD. He has worked in various capacities on several

projects in the areas of Artificial Intelligence, Software Technology Parks,

Reliability Engineering, VLSI Design, Soft Computing and E-Commerce.

He was also instrumental in spearheading post-legislation activities of

Information Technology (IT) Act, 2000. He has been member of Scientists

selection committees in DRDO.

 His current research areas include Soft Computing for Information

Mining, Evidence Based Software Engineering, Professional Outsourcing,

ICT enabled Productivity Enhancement, Cyber Laws, Cyber Ethics including

cyber forensics & Chaos Theory applications information security.

 Mr. Patki has been trained in VLSI Design at Lund University, Sweden

and Mentor Graphics, USA. He has been a referee for IEEE Transactions on

Reliability for over twenty years. He holds a copyright for FUZOS©- Fuzzy

Logic Based Operating Software. He has over fifty International

publications. He has delivered invited lectures at leading academic

institutions. He has developed courseware for VLSI design using VHDL that

has been used for training the teaching faculties at leading engineering

colleges and microelectronic industry. He has been supervising B.Tech/ ME

thesis and also imparting training for Engineering Interns in computer

Science and Information Technology.

Mr. R. C. Meharde obtained his Bachelor of

Engineering degree in Electronics with specilisation in

Control & Instrumentation, from SGS Institute of

Technology and Science, Indore in 1978. He had worked

with Hindustan Copper Ltd., a PSU from April, 1979 to

January, 1981. In January, 1981 he joined the

Directorate General of Light Houses and Lightships,

Ministry of Shipping and Transport, Government of

India. Since February, 1987, he is employed with

Department of Information Technology, (erstwhile Department of

Electronics), Government of India, which has been recently renamed as

Department of Electroncs and Information Technology by the Government

of India.

 He has worked extensively in field of Control & Instrumentation, Coastal

Navigation System, Futuristic Navigation Systems. His current areas of

interest include promotion of Electronics and IT systems and application in

areas of Industrial Electronics, Automation System, Intelligent

Transportation System and Power Electronics. He has contributed for

evolving several R& D projects in these areas which have been successfully

implemented and resulted into technology transfer amongst Indian Industry.

Presently, he is Senior Director/Scientist G-HoD Electronics Systems

Development & Applications (ESDA).

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

711

