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Abstract—Today reverse engineering poses a serious threat 

to the protection of intellectual property rights (IPR) of 

software developers. The incidents of software tampering and 

piracy have become commonplace. It is possible for software 

pirates to extract a piece of code and incorporate it into their 

own programs with considerable ease. Such cases are even more 

rampant in the web-based industry since it is teeming with 

programs in easily decompilable formats. In this paper, we 

target java applications which are available as Java class files. 

Java bytecode is platform independent and makes Java 

executables highly susceptible to being reverse engineered. 

Obfuscation is a technique to protect against this threat. This 

paper presents a level-based organization of code obfuscation 

for employing effective software protection. The authors 

propose incorporation of obfuscation as a means to improve 

MIQ of software applications. Finally, the paper demonstrates 

the working of a code obfuscator that operates on java files and 

produces obfuscated versions in two stages. 

 
Index Terms—Intellectual property rights, machine 

intelligence quotient (MIQ), obfuscation, reverse engineering, 

tamper-proofing, watermarking.  

 

I. INTRODUCTION 

Today Web-based services have completely changed the 

industrial scenario.  More and more companies are expanding 

their service offerings via the global portal i.e. the World 

Wide Web (www) to increase their customer base. The 

software industry with its evolving service capability also 

aims at bringing a number of services online. In fact, 

e-Governance is seen as one of the most viable solutions for 

improving the economic condition of the country.  

As online computing and querying becomes pervasive, 

concerns about data protection and security have taken on 

new urgency [1]. Unauthorized users and clients should not 

be able to tamper with the program codes. What makes 

securing data difficult is that it is not static, but manipulated 

in a networked environment. Using reverse engineering, 

malicious parties can steal the intellectual property associated 

with such code with relative ease. To address this issue, a 

number of techniques have been proposed. Prominent among 

them are watermarking, tamper-roofing and obfuscation [2].  

Obfuscation has become a trend in developing software 

modules for IPR protection. In this paper, we describe the 

need for employing effective software protection and 

propose a level-based organization of code obfuscation.    

The remainder of this paper is structured as follows. 

Section II describes the backgrounds for code obfuscation. 
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Section III discusses MIQ (Machine Intelligence Quotient) as 

a new software evaluation measure and introduces 

obfuscation as a MIQ parameter.  Section IV proposes a 

three-level code obfuscation approach for achieving high 

degree of software protection.  The implementation of our 

code obfuscator is illustrated in Section V. The paper 

concludes in Section VI. 

 

II. BACKGROUND 

A. Software Engineering 

The advent of powerful decompilers has facilitated 

remarkably faster and easy source code extraction, thus 

exposing intellectual property to potential security threats. 

Consequently, software protection has become a prime area 

of interest.   While it is believed that complete protection of 

software is an unattainable goal, recent researches have 

shown that protection can be achieved to a large extent. 

Software protection techniques are aimed at defending the 

intellectual property of the software against various types of 

attacks. The intellectual property can be the software design, 

data contained in the software or the algorithm. Basically 

three types of attacks on the intellectual property contained in 

software and their corresponding defenses are identified. A 

defense against reverse engineering is obfuscation, a process 

that renders software unintelligible but still functional. A 

defense against software piracy is watermarking, a process 

that makes it possible to determine the origin of software. A 

defense against tampering is tamper proofing, so that 

unauthorized modifications to the software will result in non 

functional code [2].  

B. Reverse Engineering   

In the software world reverse engineering means taking an 

application or program for which source code and 

documentation is not available and attempting to recover 

details regarding its design and implementation [3]. Reverse 

engineering is related to several aspects of software security. 

It is used to understand how a program performs some action 

and to bypass protection. Hence it is necessary to protect the 

software against such attacks and code obfuscation is a 

promising defense mechanism.  

C. Code Obfuscation 

The code obfuscation [2], [4] problem is formally stated as 

follows: 

Given a set of obfuscating transformations T={T1 

,T2,…Tn} and a program P consisting of  source code 

objects(classes, methods, statements, etc)  {S1, S2.,…Sk} ,find 

a new program P‟={…,S‟j= Tj(Sj),…} such that: 
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 P‟ has the same observable behavior as P, i.e. the 

transformations are semantic preserving. 

 The obscurity of P‟ is maximized, i.e. understanding 

and reverse engineering P‟ will be strictly more time 

consuming than understanding and reverse 

engineering P. 

 The resilience of each transformation Ti(Sj) is 

maximized , i.e. it will be either difficult to construct 

an automatic tool to undo the transformations or 

executing such a tool will be extremely time 

consuming. 

 The cost (the execution time/space penalty incurred 

by the transformation) of P‟ is etc. 

 

III. IMPROVING MIQ OF SOFTWARE PACKAGES 

Machine Intelligence Quotient (MIQ) has long been used 

as an evaluation measure for Human-Machine Cooperative 

systems [5]. However, until recently, no attempt had been 

made to measure software intelligence. To assess software 

products on the basis of their intelligence, authors [6] 

proposed an MIQ-based evaluation methodology for COTS 

(Commercial Off-the shelf) software components.   

A. Machine Intelligence Quotient (MIQ)  

The machine intelligence quotient (MIQ) is a measure to 

assess the intelligence of an autonomous system. Any index, 

numerical or linguistic framework indicating the degree of 

autonomy of an intelligent agent can be regarded as MIQ 

quantification. 

MIQ can be considered as a union of machine control 

intelligence (Mc) and machine interface intelligence (MF) [6] 

as  

 M = Mc + MF

Control intelligence is composed of three control abilities 

to manage three different events that occur from the 

environment - known events, uncertain events and 

exceptional events. Interface intelligence indicates 

intelligence degree needed from human when human and 

machine exchange information of plant states or control 

commands.   

B. Obfuscation as MIQ Parameter   

In context of software applications, known events 

comprise legalized software use without failure. The 

uncertain and exceptional events might include: 

 erratic software behavior  

 attacks by malicious agents 

 attacks by malicious hosts  

 attempts to reverse engineer it back into the source 

code 

We propose incorporation of obfuscation as a means to 

improve MIQ of software applications. One of the greatest 

challenges remains the lack of analysis techniques, and 

metrics for evaluating and comparing the strength of various 

software protection techniques [7]. MIQ evaluation measure 

can be applied to measure the effectiveness of software 

protection tools. 

IV. LEVEL BASED ORGANIZATION OF CODE OBFUSCATION 

We aim to incorporate an enhanced code obfuscating 

security feature in software at three levels (as illustrated in 

Fig. 1)  

Level 1: Incorporating tamper detection capability in the 

program. The program should be able to show its status 

(whether an attempt has been made to change it or not) 

whenever required.  

Level 2: The program should display tamper resistance 

(armoring) and attempt to shield itself in the face of 

tampering. 

Level 3: The program obfuscates itself dynamically 

whenever an attempt is made to decompile or change it. This 

dynamic obfuscation should be random (changing function 

names, classes, interfaces etc) so that the opponent cannot 

draw any kind of link between the components. 

 

 
 

Fig. 1. Implementing software security at three levels. 

 

A software program developed so as to include this 

security feature will not only obscure code but also employ 

self-defence against unauthorized access.   

 

V. SOFTWARE IMPLEMENTATION 

We have designed a code obfuscator using Java [8] for 

Windows platform that works in two stages.  

STAGE 1: The obfuscator accepts the candidate java file 

(to be obfuscated) as input and outputs an obfuscated version 

after removing comments and indentations from the program. 

This obfuscated version is written as a new java file in the 

target folder while the original file remains unchanged. Fig. 

2. gives a block diagram representation of Stage 1 obfuscator. 

STAGE 2: The obfuscator accepts the candidate java file 

(to be obfuscated) and a class in it as inputs and obfuscates 

the following fields of the input class –  

1) Declared methods 

2) Declared fields 

3) Interfaces implemented by the class 

4) Nested classes 

The above fields are changed to random integers and the 

obfuscated version is printed as output. The obfuscated 

version is written as a new java file in the target folder while 

the original file remains unchanged. Fig. 3. illustrates this. 

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

709



  

 
Fig. 2. Figure depicting inputs and outputs of Stage 1 obfuscator. 

 

 
Fig. 3. Figure depicting inputs and outputs of Stage 2 obfuscator. 

 

A. Working Illustration 

Example 1 (Stage 1): When the sample java program in 

Figure 4 is input to Stage 1 obfuscator, an obfuscated version 

is output as in Figure 5.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Input java program (Stage 1 Obfuscator) 

 

 

 

 

 

 

 

 
Fig. 5. Output java program (Stage 1 Obfuscator) 

 

Example 2 (Stage 2): When the sample java program and  

its class in Figure 6 are fed as inputs to Stage 2 obfuscator, an 

obfuscated version is output as in Figure 7. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Input java program (Stage 2 Obfuscator) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 7. Output java program (Stage 2 Obfuscator) 

 

VI. CONCLUSIONS AND FUTURE WORK 

Obfuscation is proposed as a MIQ parameter for software 

products. The authors propose a level-based approach to 

effectively secure software modules against potential 

security threats. The paper also demonstrates the working of 

a code obfuscator that operates on java files and produces 

obfuscated versions in two stages.  

The existing obfuscation schemes are applied to programs 

in a static manner. There is no technique available to 

obfuscate a piece of code dynamically in the face of an attack. 

We strive to realize our proposed level-based approach by 

imparting dynamic decision-making ability to the software. 

Darwinian evolution accounts for the behavior of naturally 

occurring intelligent entities and can be used to guide the 

class circle 

{   //start of class circle 

 double a,b,rad; //declaration of variables 

 circle(double x,double y,double radius) 

 {  //start of constructor 

a=x; 

b=y; 

rad=radius; 

} 

 circle(circle c)//single arguement constructor 

{ 

a=c.a; 

  b=c.b; 

rad=c.rad; 

} 

void show()//function to display the value of variables 

{ 

System.out.println("The value of the parameters are :"); 

  System.out.println("a = "+a+"  b = "+b+"  radius = 

"+rad); 

} 

 

}// end of class circle 

 

 

class circle{ double a,b,rad; circle(double x,double 

y,double radius){ a=x; b=y;  rad=radius;   }circle(circle 

c){ a=c.a; b=c.b; rad=c.rad; } void show() { 

System.out.println("The value of the parameters are :"); 

System.out.println("a = "+a+"  b = "+b+"  radius = 

"+rad); }} 

Person() 

. . . 

private String firstname; 

private String lastname; 

public String getFirstname() { 

return firstname; 

} 

public void setFirstname(String firstname) { 

this.firstname = firstname; 

} 

public String getLastname() { 

return lastname; 

} 

public void setLastname(String lastname) { 

this.lastname = lastname; 

public static void main(String a[]) 

{ 

p.meth1(); 

p.meth2(); 

p.fun1(); 

. . . 

 

Person() 

{ 

. . .    

        private String __19289; 

        private String __71567; 

        public String __470() { 

          return __19289; 

        } 

         public void __40826(String __19289) { 

                       this.__19289 = __19289; 

        } 

        public String __74317() { 

            return __71567; 

} 

        public void __41381(String __71567) { 

            this.__71567 = __71567; 

public static void main(String a[]) 

{ 

p.__14058(); 

p.__71200(); 

p.__71540(); 

. . .  
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creation of artificial entities that are capable of intelligent 

behavior [9]. Our efforts are directed towards stimulating an 

evolutionary process in software programs so that subsequent 

obfuscated versions have increased MIQ.   
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