
 

 

Abstract—Electrochemical machining is one of the widely 

used non-traditional machining processes to machine 

complicated shapes for electrically conducting but 

difficult-to-machine materials such as superalloys, Ti-alloys, 

alloy steel, tool steel, stainless steel, etc.  Use of optimal ECM 

process parameters can significantly reduce the ECM operating, 

tooling, and maintenance cost and will produce components of 

higher accuracy.  This paper investigates the effect and 

parametric optimization of process parameters for 

Electrochemical machining of EN-31 steel using grey relation 

analysis. The process parameters considered are electrolyte 

concentration, feed rate and applied voltage and are optimized 

with considerations of multiple performance characteristics 

including material removal rate, overcut, cylindricity error and 

surface roughness. Analysis of variance is performed to get 

contribution of each parameter on the performance 

characteristics and it was observed that feed rate is the 

significant process parameter that affects the ECM robustness.  

The experimental results for the optimal setting show that there 

is considerable improvement in the process. The application of 

this technique converts the multi response variable to a single 

response Grey relational grade and, therefore, simplifies the 

optimization procedure. 

 
Index Terms—Electrochemical machining; Grey relation 

analysis; Material removal rate; overcut; Cylindricity error. 

 

I. INTRODUCTION 

Electrochemical machining (ECM) is one of the important 

non-traditional machining processes in the present 

manufacturing industry to machine difficult to cut, high 

strength and heat resistant materials into complex shapes.  

Electrical current passes through an electrolyte solution 

between a cathode (tool) and an anode (workpiece). The 

workpiece is eroded in accordance with Faraday’s law of 

electrolysis. Its industrial applications have been extended to 

electrochemical drilling, electrochemical deburring, 

electrochemical grinding and electrochemical polishing [1]. 

The electrolyte flows between the electrodes and carries 

away the dissolved metal. In this process, a low voltage 

(5-25V) is applied across two electrodes with a small gap size 

(0.2 mm – 0.5 mm) and with a high current density around 
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2000 A/cm2. Electrolytes are either acids or more generally 

basic salts dissolved in water.  Typically NaCl or NaNO3 is 

supplied to flow through the gap with a velocity of 20-30 m/s.   

ECM generates no burrs, no stress, and has a long tool life, 

high material removal rate and good surface quality. The only 

restriction imposed, is that it must be sufficiently good 

conductor of electricity. Further, the tool material may have 

any strength irrespective of the strength of the workpiece 

which may be very high. The low temperature during the 

operation does not cause any thermal damage to the work 

piece. ECM process originally designed for manufacturing 

complex shaped components in defense and aerospace 

industries has been extended to many other industries such as 

automotive, forging dies, electric and surgical components 

[2].   

The optimization of process parameters is essential for the 

achievement of high responsiveness of production, which is 

the preliminary basis for survival in today’s dynamic market 

conditions. Due to the complexity of the electrochemical 

machining process it is very difficult to determine the optimal 

machining parameters for improving the output quality.  

Optimal quality of the workpiece in ECM can be generated 

through combinational control of various process parameters 

[3]. The various process parameters in electrochemical 

machining are electrolyte concentration, voltage, feed rate, 

inter-electrode gap and electrolyte feed rate.  The selection of 

proper process parameters for electrochemical machining 

process is crucial to have the efficient and high quality output.  

Due to the complexity of electrochemical machining process 

it is very difficult to determine optimal machining parameters 

for improving the output quality. To select the process 

parameters properly, several researchers developed 

mathematical models based on statistical regression 

techniques or neural computing to establish the relationship 

between the machining performance and the machining 

parameters.  Particle swarm optimization algorithm has been 

used to optimize electrochemical machining parameters like 

tool feed rate, electrolyte flow velocity and the applied 

voltage in order to improve dimensional accuracy, material 

removal rate and machining cost [4]. Multi-objective 

optimization of current, voltage, feed rate and gap was done 

for improving material removal rate and surface roughness 

using multiple regression models and artificial neural 

networks [5]. Mathematical models were developed for 

correlating the influences of various machining parameters 

on  

number of  experiments have to be performed and analyzed in 

order to build the mathematical models.  Thus the required 

model building is very costly in terms of time and materials.   
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In this paper an attempt has been made to optimize the 

process parameters like electrolyte concentration, feed rate 

and applied voltage considering the multiple characteristics 

including material removal rate, overcut, cylindricity error 

and surface roughness by using Grey relation analysis.  The 

grey relational theory provides an efficient management 

upon the uncertainty, multi-input and discrete data. On the 

other hand, the grey relational analysis reveals the necessary 

information of the interactions among parameters. It provides 

a solution of a system in which the model is unsure or the 

information is incomplete. It also provides an efficient 

solution to the uncertainty, multi-input and discrete data 

problem. The relation between machining parameters and 

performance can be found out with the Grey relational 

analysis [7].  Confirmation tests were conducted to check the 

validation of optimal process parameters. 

 

II. EXPERIMENTAL PROCEDURE 

A. Experimental setup 

Experiments were conducted on the Metatech (ECMAC) 

made Electrochemical machining equipment which is shown 

in Fig. 1. The ECM setup consists of machining chamber, 

control panel, electrolyte circulation system. The workpiece 

is fixed inside the machining chamber and the cathode (tool) 

is attached to the main screw which is driven by a stepper 

motor. For avoiding short-circuits, a current sensing circuit is 

interfaced between the tool and the stepper motor controller 

circuit.  If the current exceeds an acceptable limit, a signal is 

sent to the stepper motor controller circuit which 

immediately reverses the downward motion of the tool.  The 

process parameters like current, voltage and feed rate are 

varied by the control panel.  The electrolyte is pneumatically 

pumped through a reservoir.  

 Figure 1: Electrochemical Machining setup
 

            
(a)                             (b) 

 
Figure 2: (a) Copper electrode with epoxy coating 

(b) Dimensions of the tool 

B. Selection of work piece and tool materials 

Cylindrical block of 100 mm diameter and 25 mm height 

made of EN-31 steel which is a high carbon alloy steel with 

high degree of hardness with compressive strength and 

abrasion resistance is chosen as workpiece.  It is popularly 

used in automotive type applications like axle, bearings, 

spindle and molding dies etc.   

The electrolytic copper whose dimensions are shown in 

Fig. 2 was used as electrode. To avoid machining due to stray 

current, the tool was coated with a layer of 200µm with 

epoxy powder resin, except for the base of the tool which will 

be the machining area. Electrolyte was axially fed to the 

machining zone through a  hole provided centrally in the tool.  

NaCl solution was chosen as electrolyte, as it has no 

passivation effect [8]. 

C. Selection of the machining parameters and their levels 

 In this study, the experimental plan has three controllable 

variables, namely, electrolyte concentration, feed rate and 

applied voltage. On the basis of preliminary experiments 

conducted by using one variable at a time approach, the 

feasible range for the machining parameters was defined by 

varying the electrolyte concentration          10 – 30 %, feed rate 

0.1 – 0.32 mm/min and voltage 10-30 V. In the machining 

parameter design, three levels of the cutting parameters were 

selected, shown in Table 1. 

 
TABLE 1.ELECTROCHEMICAL MACHINING PROCESS PARAMETERS 

 Process parameter 
Level 

1 

Level 

2 

Level 

3 

 

A 

 

Electrolyte conc. (%) 
 

10 

 

15 

 

20 

 

B Feed rate (mm/min) 0.10 0.21 0.32 

C Voltage (V) 10 15 20 

TABLE2. EXPERIMENTAL LAYOUT USING L9 ORTHOGONAL ARRAY 

 

 

 

 

 

 

 

 

D. Design of experiments 

The application of design-of-experiments (DoE) requires 

careful planning, prudent layout of the experiment, and 

expert analysis of results. Taguchi has standardized methods 

for each of these DoE application steps. 

The experiment includes three process parameters 

electrolyte concentration, feed rate and voltage. In the present 

study, there are six degrees of freedom owing to the 

three-level polishing parameters, while the interaction 

between the parameters is neglected. Once the degrees of 

 

E

xp 

No. 

A 

Electrol

yte conc. 

(%) 

B 

Feed 

rate 

(mm/mi

n) 

C 

Voltage 

(V) 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 
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freedom are known, the next step is to select an appropriate 

orthogonal array. The degrees of freedom for the orthogonal 

array should be greater than or at least equal to those of the 

process parameters. In this study, an L9 orthogonal array is 

used because it has eight degrees of freedom in the polishing 

parameters. Each process parameter is assigned to a column 

and nine polishing parameters. There are hence nine 

experiments needed to study the entire process parameter 

space by using the L9 orthogonal array. The experimental 

layout for the process parameters is shown in Table 2. 

TABLE3.EXPERIMENTAL RESULTS 

Ex

p. No. 
MRR 

(g/min) 

Overc

ut (mm) 

Cylindrit

y error(mm) 

Surface 

roughness 

(µm) 

1 0.141 1.345 0.546 0.37 

2 0.315 0.821 0.388 0.43 

3 0.600 0.566 0.233 0.36 

4 0.257 0.491 0.473 0.24 

5 0.407 1.096 0.168 0.32 

6 0.393 0.641 0.202 0.31 

7 0.317 0.941 0.402 0.22 

8 0.272 1.088 0.249 0.31 

9 0.496 0.420 0.322 0.27 

III. GREY RELATIONAL ANALYSIS 

A. Multi response optimization using orthogonal array 

with Grey relational analysis 

Taguchi method is designed to optimize single response 

characteristic. The higher-the-better performance for one 

factor may affect the performance because another factor 

may demand lower-the-better characteristics. Hence, 

multi-response optimization characteristics are complex. In 

this section, the use of orthogonal array with the Grey 

relational analysis optimization methodology for 

multi-response optimization is discussed. 

The optimization of the process was performed in the 

following steps: 

1) Normalizing the experimental results of material 

removal rate, overcut and surface roughness.  

2) Performing the Grey relational generating and to 

calculate the Grey relational coefficient. 

3) Calculating the Grey relational grade by averaging the 

Grey relational coefficient. 

4) Performing statistical analysis of variance (ANOVA) for 

 the input parameters with the Grey relational grade and 

to  find which parameter significantly affects the 

process. 

5) Selecting the optimal levels of process parameters. 

6) Conducting confirmation experiment and verify the 

optimal process parameters setting. 

In Grey relational analysis [9], the complex multiple 

response optimizations can be simplified into the 

optimization of a single response Grey relational grade.  

B. Grey relation generation 

In the grey relational analysis, when the range of the 

sequence is large or the standard value is enormous, the 

function of factors is neglected. However, if the factors goals 

and directions are different, the grey relational analysis might 

also produce incorrect results. Therefore, one has to 

preprocess the data which are related to a group of sequences, 

which is called “grey theory relational generation” [10]. 

TABLE4.PREPROCESSED DATA RESULTS 

 

TABLE 5.GREY RETIONAL COEFFICIENT OF EACH PERFORMANCE 

CHARACTERISTIC 

 

No. 
MR

R 

Overc

ut 

Cylindricit

y error 

Surfac

e 

roughness 

Ide

al 
1 1 1 1 

1 0.5 0.5 0.5 0.583 

2 
0.61

6 
0.697 0.631 0.5 

3 1 0.850 0.853 0.616 

4 
0.57

2 
0.928 0.553 0.918 

5 
0.70

3 
0.577 1 0.662 

6 
0.68

9 
0.807 0.917 0.701 

7 
0.61

8 
0.639 0.617 1 

8 
0.58

3 
0.580 0.823 0.626 

9 
0.81

4 
1 0.710 0.806 

 

For higher-the-better quality characteristics data 

preprocessing is calculated by: 

 

                                                     (1) 

For lower-the-better quality characteristics data 

preprocessing is calculated by:  

 

                       (2) 

 

 

No

. 

MR

R 

Overc

ut 

Cylindrici

ty error 

Surfac

e 

roughness 

1 0 0 0 0.285 

2 
0.37

9 
0.566 0.417 0 

3 1 0.824 0.828 0.380 

4 
0.25

2 
0.923 0.193 0.904 

5 
0.57

9 
0.269 1 0.523 

6 
0.54

9 
0.761 0.910 0.571 

7 
0.38

3 
0.436 0.380 1 

8 
0.28

5 
0.277 0.785 0.476 

9 
0.77

3 
1 0.592 0.762 

௜(݇) =  ௬೔(௞)ି୫୧୬ݔ ௬೔(௞)୫ୟ୶ ௬೔(௞)ି୫୧୬ ௬೔(௞)

௜(݇) = ୫ୟ୶ ୷౟(௞)ି ௬೔(௞)୫ୟ୶ݔ ௬೔(௞)ି୫୧୬ ௬೔(௞)
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where  is the value  after grey relation generation, 

 is the smallest value of   and  is 

the largest value of for the kth response.   

C. Grey relational grade 

In the grey relational analysis, the grey relational grade is 

used to show the relationship among the series. Let (X,  Γ ) 

be a grey relational space, X stand for the collection of the 

collection of grey relational factors,  be the compared 

series, and  be the reference series: 
 

  

                                 

 

The grey relation coefficient is  
 

                              (5) 

 

where 

                                       (6) 

 

     

            

 
 

The grey relational grade is obtained by: 

                                   (10) 

  TABLE6. INFLUENCE OF PROCESS PARAMETERS OF GREY RELATIONAL 

GRADE 

 

No

. 

Grey relational 

grade 
Order 

1 0.520 9 

2 0.611 8 

3 0.829 2 

4 0.742 4 

5 0.735 5 

6 0.778 3 

7 0.718 6 

8 0.653 7 

9 0.832 1 

 

Table 3 shows the experimental results obtained and Table 

4 shows the pre-processed data results.  The grey relation 

coefficients of each performance characteristic are calculated 

using (5) and are shown in Table 5.  Table 6 shows the grey 

relational grade and order using the experimental layout.  The 

higher value of the grey relational grade represents the 

stronger relational degree the reference sequence (k) and 

the given sequence (k). 

D. Factor effects 

Since the experimental design is orthogonal, it is then 

possible to separate the effects of each process parameter at 

different levels. For example, the mean of grey relational 

grade for the electrolyte concentration at level 1, 2 and 3 can 

be calculated by taking the average of the grey relational 

grade for the experiments 1–3, 4–6 and 7–9, respectively 

The mean of the grey relational grade for each level of 

other machining parameters can be computed in the similar 

manner. The mean of the relational grade for each level of the 

combining parameters is summarized in the multi-response 

performance is shown in Table 7. Fig. 3 shows the influence 

of processes parameters on quality characteristics.   

 

IV. ANALYSIS OF VARIANCE 

Analysis of variance (ANOVA) was introduced by Sir 

Ronald Fisher [11]. The purpose of the analysis of variance 

(ANOVA) is to investigate which design parameters 

significantly affect the quality characteristic.  The traditional 

TABLE7.RESPONSE TABLE FOR GREY RELATIONAL GRADE 

Process 

parameter 

Grey relational grade 

Level 

1 

Level 

2 

Level 

3 

Max 

-Min 

Electrolye 

Conc. 
0.653 0.751 0.734 0.098 

Feed rate 0.66 0.666 0.813 0.153 

Voltage 0.65 0.728 0.760 0.110 

Mean value of grey relational grade = 0.532 

 
TABLE 8.RESULTS OF ANALYSIS OF VARIANCE 

 

 
Figure 3: Influence of process parameters on multiple performance 

 

statistic technique can only obtain one parameter in a single 

sequence; one has to do the analysis repeatedly to obtain 

other factors for the experiment [12]. 

ANOVA of the response quality characteristics was shown 

in    Table 8 and it is observed that feed rate is the significant 

factor for maximizing the material removal rate and 

minimizing the overcut and cylindricity error.  An increase in 

feed rate increases the material removal rate and reduces the 

overcut and cylindricity error.  This happens due to the 

reduction in the inter-electrode gap that increases the current 

density in the gap with the consequent anodic dissolution. 

 DOF 

Sum 

of 

Squares 

Mea

n of 

Squares 

F 
Contribu

tion(%) 

A 2 
0.01

65 

0.00

83 

0.7

3 
19.54 

B 2 
0.04

49 

0.02

24 

3.4

2 
53.19 

C 2 
0.01

93 

0.00

97 

0.8

9 
22.86 

Err

or 
2 

0.00

37 

0.00

18 
 4.41 

Tot

al 
8 

0.08

44 
  100 

௜ݔ  ,(௜(n)ݔ, . . . ,௜(2)ݔ ,௜(1)ݔ) = ௜ݔ Є X, i= 1, 2, . . . , m       (3)          ݔ଴ = (ݔ଴(1), ݔ଴(2), . . . ,ݔ଴(n)),  ݔ଴ Є X                              (4)                      

γ (ݔ଴(k), ݔ௜(k)) = 
௱ౣ౟౤  శ അ ௱೘ೌೣ௱బ೔ (௞)ା  ఍ ௱೘ೌೣ

(݇) ଴௜߂ ଴(k)ݔ| =  െ |௜(k)ݔ 
(7) 

 (8) 
            (9) 

           (8) 
଴௜௞    ௠௔௫߂  = ௠௔௫߂  ௜    ௠௔௫߂௠௔௫ = ଴௜௞    ௠௜௡߂   ௜   
ζ Є

(k)                                                    
(k)                   

 [ 0, 1 ]                                                              

γ (ݔ଴ , ݔ௜) = ଵ௡ ∑ γ (ݔ଴(k), ௜(k)) ௡௞ୀଵݔ 
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Once the optimal level of the cutting parameters is 

identified, the following step is to verify the improvement of 

the performance characteristics using this optimal 

combination. Table 9 shows the comparison of the 

experiment results using the initial combination of the 

machining parameters with the optimal one.  

 
TABLE 9. RESULTS OF CONFIRMATION TESTS 

 
Process 

parameter 

MRR 

 
Overcut 

Cylindricity 

error 

Surface 

roughness 

Initial 

design 
A2B2C2 0.418 0.876 0.182 0.36 

Optimal 

design 
A2B3C3 0.712 0.482 0.121 0.21 

 

As observed in Table 9, material removal rate increases 

form 0.418 g/min to 0.712 g/min; overcut is reduced from 

0.876 to 0.482 mm; cylindricity error was reduced from 

0.182 to 0.121 mm and surface roughness value was reduced 

from 0.36 µm to 0.21 µm . Based on the above results, it is 

clearly observed quality characteristics can be greatly 

improved through this study.  

 

V. CONCLUSIONS 

The paper presented the optimization of the 

electrochemical machining of EN-31 steel by the grey 

relational analysis. The optimal process parameters that have 

been identified to yield the best combination of process 

variables are electrolyte concentration at 15 %, feed at     0.32 

mm/min and voltage at   20 V. As a result, the target 

performance characteristics, i.e. material removal rate can be 

maximized and the overcut, cylindricity error and surface 

roughness can be minimized through this method. The 

effectiveness of this approach is verified by experiment and 

analysis of variance. 
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