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Abstract—Conventional error based cost function provides 

unsatisfactory weight update of an adaptive system when 

outliers are present in the training signal. To alleviate this 

problem in this paper a hybrid approach using differential 

evolution (DE) and Wilcoxon norm is proposed to provide 

robust training in identification of complex nonlinear systems. 

Exhaustive simulation study shows superior performance of the 

new method compared to the conventional square error based 

minimization method. 

 
Index Terms—Differential evolution, robust system 

identification, wilcoxon norm. 

 

I. INTRODUCTION 

The identification refers to determination of a suitable 

mathematical model of a given system, from which the 

behavior of the system under different operating conditions 

can be predicted. The identification also helps to develop a 

controller which enables the system to perform in a desired 

manner. The practical plants and systems are mostly 

nonlinear and dynamic in nature and hence their 

identification is complex and challenging task. Many 

research efforts still ongoing to develop accurate and 

appropriate model of complex plants when outliers are 

present in the training signal. Under such practical situations 

the training of model using conventional learning algorithms 

such as the least mean square (LMS) or recursive least square 

(RLS) [1] becomes ineffective and inaccurate. But all these 

derivative based algorithms involve  squared of the error term 

as the fitness function. Further  many evolutionary 

computing techniques such as genetic algorithm (GA) [2], 

particle swarm optimization (PSO) [3], bacterial foraging 

optimization (BFO) [4], ant colony optimization (ACO) [5] 

and differential evolution (DE) [6] have been employed as 

optimization tools in identification tasks. This new approach 

employs the mean square error (MSE) as the fitness or cost 

function. When outliers are present in the training signal, the 

convergence performance of MSE based learning algorithm 

is poor. Therefore there is a need to suggest improved method 

of nonlinear system identification under such adverse 

situation of outliers in the training signal. Conventionally an 

adaptive filter minimizes the Euclidean norm of the error, 
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while an robust estimator minimizes a robust cost function 

(RCF) called Wilcoxon norm [7]. Accordingly robust 

training of artificial neural network (ANN) have recently 

been proposed for approximation of nonlinear functions [8]. 

In this paper a new method of robust identification of 

nonlinear dynamic systems or plants is proposed by 

progressively minimizing the RCF [7], of errors using a 

derivative free DE technique. The identification potentiality 

of the new method is assessed through simulation study and 

is compared with the results obtained from corresponding 

Euclidean norm based DE technique. The main contribution 

of the paper is the formulation of robust identification task as 

an optimization problem. The second contribution is the 

effective minimization of a robust norm by employing a 

population based derivative free DE technique which 

essentially adjusts the weights of the model.  

The organization of the paper is outlined in six sections. 

Section II introduces the identification problem. An overview 

of DE is dealt in Section III. The new learning algorithm 

required for robust identification of the models using DE is 

developed and presented in Section IV. To validate the 

performance of the new model simulation study of different 

nonlinear systems is carried out in Section V. The conclusion 

of the proposed investigation is drawn in Section VI.     

 

II. ROBUST IDENTIFICATION OF NONLINEAR SYSTEMS 

A scheme of identification of a dynamic nonlinear system 

is shown in Fig.1 in which )(),(ˆ),( nynynx and 

)(ne denote the input, output of the model, the output of the 

system and the error between the two at n th time instant 

respectively. The input )(nx is an uniformly generated white 

signal. About 10% to 50% of the samples of the system are 

contaminated with strong outliers of magnitude as high as  

5  to 20 . The error term is thus given by  

 

)(ˆ)()( nynyne           (1) 

 

From the error samples the Wilcoxon norm is computed 

which is then minimized by changing the weights of the 

model by using DE algorithm. The Wilcoxon norm of the 

errors is a robust norm against outliers and is explained here.  

Robust norm of error terms (Wilcoxon Norm) [7],[8]  

A score function, )(u of error terms has two 

characteristics   
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Let an error vector be defined as 

 
TKeeeE )](..).........2()1([       (3) 

 

Rearrange the error vector in an increasing order and let 

each element iv of the ordered vector is ranked serially as 

Ki 1 . In other words let ivR i )( denotes the rank 

or order value of iv such that .........321 Kvvvv   

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig. 1.  Robust identification scheme of a dynamic system using DE 

 

The score associated with the score function is a(i) and is 

given by 
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where 
1


K

i
u . Then the Wilcoxon norm, iC is defined 

as  
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III. DIFFERENTIAL EVOLUTION 

In this section the basic principle of DE is outlined. The 

initial target population is denoted by NP. Each individual of 

the population has D parameter values which are initially 

selected randomly between predefined search ranges 
min

ijx and .max

ijx Thus 

rxxxx ijijijij  )( minmaxmin0
       (6) 

where 
t

ijx  represent the 
thi individual for jth dimension at tth 

generation and r is a uniform random number between 0 and 

1. Mutant individuals are generated from the target 

population by adding the weighted difference between two 

randomly selected target population members to a third 

member in the target population. It is given by  

)( It
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where rp, and r are three random chosen individuals 

from the target population such that 

)),.....,1(( NPirqp  and ),......,2,1( Dj  . F is a 

mutation scale factor which affects the differential variation 

between two individuals and its value lies between 0 to 2. 

Mutation phase is followed by the recombination of mutant 

individual with its corresponding target individual. To 

achieve this, a crossover operation is performed to obtain the 

trial individual as  
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where jD denotes to a randomly chosen dimension 

),,......,2,1( Dj  which ensures that at least one parameter of 

each trial individual 
t

iu differs from its counterpart in the 

previous generation CRu t

i .1
is crossover constant in the 

range [0,1] and 
t

ijr  is a uniformly distributed random number 

between 0 and 1.  

During the reproduction of the offspring, it is possible that 

the trial individual may exceed the search space. For this 

reason, parameter values violating the search range are 

restricted according to (6) 

  To include a trial individual 
t

iu as a member of the target 

population for the next generation, it is compared to its 

counterpart 
It

ix 
at the previous generation. The selection is 

based on the survival of the fittest among the trial and target 

individuals. Hence 
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where f (.) denotes the fitness value of an individual. 

 

IV. DE BASED ROBUST SYSTEM IDENTIFICATION : THE 

ALGORITHM 

Referring to Fig.1,  

)()]([)( knkxPky          (10)                               

where )(kn represents the outliers with amplitude of 5  or 

20  present with 10% to 50% samples of the plant outputs. 

The DE based model consists of an equal order FIR system 

with unknown coefficients. In the present adverse situation 

the learning algorithm to be developed should be immune to 

the presence of outliers in generating output response of the 

model which is in close agreement with the system response 

)(ky .The DE based robust parameter updating rule is given 

in following steps : 

1) The coefficients of the model are initially chosen from a 

population of M target vectors. Each target vector 

constitutes P number of parameters and each parameter 

represents one coefficient of the adaptive filer. 

2) K number of input samples uniformly distributed 

System 
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between 5.0 to 5.0  is used as input to the model of 

Fig. 1. In case of DE, K= 100. 

3) Each of the input samples is passed through the plant P(Z) 

and at 10-50% of randomly chosen samples of the output 

are added with outliers. In this way K  training samples 

are produced. 

4) Each input sample is also passed through the model 

using each target vector as model parameters. Thus M 

sets of K estimated outputs are obtained. 

5) Each of the desired output is compared with 

corresponding estimated output and K errors are 

produced for each target vector.  

6) Let the error vector of Pth target vector at n th generation 

due to application of K input samples to the model be 

represented as T

pKpp nenene )](.....,),........(),([ ,,2,1
. 

The error values are then arranged in an increasing 

manner from which the rank )}({ , neR pn
of each n th 

error term is obtained. The score associated with the rank 

of the each error term is evaluated as  

)5.0
1

(12)( 



K

i
ia        (11) 

where ,i  )1( Ki   denotes the rank of an error. 

At n th generation of each p th target vector the 

Wilcoxon norm is then calculated as  
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7) Since the objective is to minimize Wilcoxon norm the 

DE based optimization strategy is used. 

8) The mutation and crossover operations are carried out 

sequentially as per DE rule given in Section III. 

Selection operator is finally used to select the best M 

target vectors 

9) The learning process is stopped when Wilcoxon norm 

(WN) at an iteration reaches the minimum level. 

10) Then the elements of the corresponding best target 

vector represent the desired robust estimation of 

parameters.  

 

V. SIMULATION STUDY 

In this section, simulation study carried out to assess the 

identification performance of the proposed algorithm is 

outlined and the results of nonlinear identification of 

dynamic plants in presence of 10% to 50% of outliers in the 

desired signal are presented. The outliers are uniformly 

distributed random values within the range from -5 to 5 up to  

-20 to +20. These are added to 10% to 50% randomly 

selected training samples. The following nonlinear channel 

models are used in the simulation study :     

Example-1 

(a) Parameter of the linear system of the plant 

     [0.2600, 0.9300, 0.2600] 

Example-2 

(a)Parameter of the linear system of the plant                                      

      [0.3040, 0.9030, 0.3040] 

(b) Nonlinearity of the plants 

)}(tanh{)(:1 kykyNL n   

)(1.0)(2.0)()(:2 32 kykykykyNL n   

where )(ky  is the output of the linear part of the plant and  

)(kyn
 is the output of the overall system. 

In scheme-1, the mean square error (MSE) is used as the 

cost function where as in schemes-2 it is Wilcoxon norm 

defined in Section-III. The performance of the proposed 

scheme are obtained from simulation studies and compared 

with that obtained by scheme-1. Sum of squared error (SSE) 

is used as quantitative measure for performance evaluation. 

The parameters used in the study are no. of particles=30, no. 

of input samples=100, population size = 30, no. of 

generations = 100, no. of ensample average = 10, and 

9.0,9.0  CRF . These typical values are selected as it 

offers best possible simulation performance. Simulation is 

carried out at different conditions of outliers but the results 

presented in Figs. 2(a) – 2(d) are comparison of responses of 

the plant and the model for 50% outlier only. It is evident 

from these plots that robust model provides accurate response 

matching in presence of outlier whereas the conventional 

scheme-1 based model exhibits poor identification 

performance. In both examples, the SSE obtained from 

scheme-2 is  listed in Table 1 to Table 4 is much lower than 

that obtained from scheme-1 model.   
 
TABLE I:COMPARISON OF SUM OF SQUARED ERROR FOR EXAMPLE-1 WITH 

NL1 

Percentage of 

outliers 

Sum of squared error 

 Scheme-1 Scheme-2 

Outlier range within -5 to 5 

10% 0.0832 0.0098 

20% 0.6055 0.0095 

30% 0.1280 0.0064 

40% 1.4764 0.0063 

50% 2.5348 0.0055 

Outlier range within -10 to 10 

10% 0.3077 0.0098 

20% 0.6055 0.0095 

30% 0.2986 0.0064 

40% 2.5314 0.0063 

50% 2.5085 0.0055 

Outlier range within -20 to 20 

10% 0.6130 0.0098 

20% 0.6055 0.0095 

30% 0.9826 0.0064 

40% 2.6469 0.0063 

50% 2.4586 0.0055 
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2(a) Comparison of responses of example-1 with NL1 in presence of 50% 

outliers within the range -20 to 20 using scheme-1 
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2(b) Comparison of responses of example-1 with NL1 in presence of 50% 

outlier within the range -20 to 20 using scheme-2 
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2(c) Comparison of responses of example-2 with NL2 in presence of 50% 

outliers within the range -20 to 20 using scheme-1 
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2(d) Comparison of responses of example-2 with NL2 in presence of  50% 

outliers within the range -20 to 20 using scheme-2 

TABLE II: COMPARISON OF SUM OF SQUARED ERROR FOR EXAMPLE-1 WITH 

NL2 

Percentage of 

outliers 

Sum of squared error 

 Scheme-1 Scheme-2 

Outlier range within -5 to 5 

10% 0.1243 0.0270 

20% 0.6472 0.0306 

30% 0.1179 0.0259 

40% 1.4832 0.0242 

50% 2.5942 0.0280 

Outlier range within -10 to 10 

10% 0.2903 0.0270 

20% 0.6472 0.0306 

30% 0.2821 0.0259 

40% 2.4343 0.0242 

50% 2.5620 0.0280 

Outlier range within -20 to 20 

10% 0.5884 0.0270 

20% 0.6472 0.0306 

30% 0.9534 0.0259 

40% 2.5551 0.0242 

50% 2.5066 0.0280 

 
TABLE III:COMPARISON OF SUM OF SQUARED ERROR FOR EXAMPLE-2 WITH 

NL1 

Percentage of 

outliers 

Sum of squared error 

 Scheme-1 Scheme-2 

Outlier range within -5 to 5 

10% 0.0842 0.0109 

20% 0. 8370 0.0105 

30% 0.1632 0.0066 

40% 1.4760 0.0066 

50% 2.2872 0.0059 

Outlier range within -10 to 10 

10%  0.0109 

20%  0.0105 

30%  0.0066 

40%  0.0066 

50%  0.0059 

Outlier range within -20 to 20 

10%  0.0109 

20%  0.0105 

30%  0.0066 

40%  0.0066 

50%  0.0059 

 

TABLE IV: COMPARISON OF SUM OF SQUARED ERROR FOR EXAMPLE-2 WITH 

NL2 

Percentage of 

outliers 

Sum of squared error 

 Scheme-1 Scheme-2 

Outlier range within -5 to 5 

10% 0.0882 0.0272 

20% 0.8956 0.0309 

30% 0.1437 0.0272 

40% 1.4826 0.0256 

50% 2.3769 0.0292 

Outlier range within -10 to 10 

10% 0.2892 0.0272 

20% 0.8956 0.0309 

30% 0.3092 0.0272 

40% 2.1657 0.0256 

50% 2.3461 0.0292 

Outlier range within -20 to 20 

10% 0.7399 0.0272 

20% 0.8956 0.0309 

30% 0.9831 0.0272 

40% 2.2879 0.0256 

50% 2.2935 0.0292 
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VI. CONCLUSION 

The paper has introduced the DE based training of the 

parameters of nonlinear identification models using robust 

norm. Extensive simulation studies demonstrate that more 

accurate and robust models can be generated using the DE 

and Wilcoxon norm compared to those obtained by 

conventional squared error based norm. Thus when outliers 

are present in the training samples the Wilcoxon norm based 

training outperforms the conventional squared error norm 

based training algorithms 
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