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Abstract—In this work, an overview of available papers are 

provided, at first ferroresonance phenomenon is introduced 

and then various type of ferroresonance in a potential 

transformer is simulated, then effect of neutral earth resistance 

on the onset of chaotic ferroresonance and duration of chaotic 

transient in a potential transformer including nonlinear core 

losses has been studied. It is expected that this resistance 

generally cause controlling ferroresonance overvoltages.  The 

proposed approach was implemented using MATLAB, and 

results are presented. For confirmation this aspect simulation 

has been done on a one phase potential transformer rated 

100VA, 275kV. Core losses is modelled in terms of voltage and 

includes nonlinearities in core losses .The simulation results 

show that connecting the neutral earth resistance on the system 

configuration, shows a great controlling effect on 

ferroresonance overvoltages.  

 

Index Terms—Ferroresonance oscillation, stabilizing, chaos 

control, potential transformer, nonlinear core losses effect, 

neutral earth resistance. 

 

I. INTRODUCTION 

Ferroresonance can occur whenever an iron cored 

inductance is energized via some capacitance in an 

unintended configuration. The result is usually unexpectedly 

high voltage with strange waveform across the inductance 

and the capacitance, together with higher than expected 

current flows. In recent years, many papers described it from 

various aspects. For example the susceptibility of a 

ferroresonance circuit to a quasi-periodic and frequency 

locked oscillations has been presented in [1], in this case, 

investigation of ferroresonance has been done upon the new 

branch of chaos theory that is quasiperiodic oscillation in the 

power system and finally ferroresonance appears by this 

route. Modeling iron core nonlinearities has been illustrated 

in [2]. Mozaffari has been investigated the ferroresonance in 

power transformer and effect of initial condition on this 

phenomena, he analyzed condition of occurring chaos in the  

transformer and suggested the reduced equivalent circuit for 

power system including power switch and trans [3], [4]. The 

controlling effect of transformer connected in parallel to a 

MOV arrester has been illustrated in [5]. Controlling 

ferroresonance has been investigated in [6]. It is shown 

controlling ferroresonance in potential transformer by 
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considering circuit breaker shunt resistance effec. In [7], 

electromagnetic potential transformer has been studied in 

the case of nonlinear core losses by applying metal oxide 

surge arrester in parallel with it. Analysis of chaotic 

ferroresonance phenomena in unloaded transformers and 

potential transformers including nonlinear core losses effect 

has been shown in [8]-[10]. In [11], effect of neutral 

resistance on controlling ferroresonance oscillations in 

power transformer has been studied and it has been shown 

that system has been greatly affected by neutral resistance. 

In current paper, this control method for controlling of 

unstable and high amplitude nonlinear oscillation is used. 

Using of this method results improving voltage waveform 

which leads to protection from insulation, fuses and 

switchgears. 

 

II. SYSTEM MODELING WITHOUT NEUTRAL 

RESISTANCE 

Fig. 1 shows the circuit diagram of power system 

components at the 275 kV substations. VT is isolated from 

sections of bus bars via disconnector DS2. Ferroresonance 

conditions occurred upon closure of disconnector DS1 with 

C.B and DS2 open, leading to a system fault caused by 

failure of the potential transformer primary winding. 
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Fig. 1. System one line diagram arrangement resulting to VT 

Ferroresonance 

 

Fig.2 shows the basic ferroresonance equivalent circuit 

used in this analysis. The resistor R represents transformer 

core losses where modeled the hysteresis losses effect. 

In Fig. 2, E is the RMS supply phase voltage, Cseries is the 

circuit breaker grading capacitance and Cshunt is the total 

phase-to-earth capacitance of the arrangement. The resistor 

R represents a potential transformer core loss that has been 

found to be an important factor in the initiation of 

ferroresonance and has been modeled as a nonlinear 

resistance in this paper. λ-i characteristic of the potential 
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transformer is modeled as in [12], [13] by the polynomial  
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Fig.2. Basic reduced equivalent ferroresonance circuit [6] 

7 bai 
                      (1) 

where 41.0,14.3  ba  

 

III. SYSTEM DYNAMIC AND EQUATION  

Mathematical analysis of equivalent circuit by applying 

KVL and KCL has been done and equations of system can 

be presented as below: 
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where ω is supply frequency, E is the rms supply phase 

voltage, Cseries is the circuit breaker grading capacitance and 

Cshunt is the total phase-to-earth capacitance of the 

arrangement. The time behavior of the basic ferroresonance 

circuit is described by (4). Results for one parameter sets 

showing one possible type of ferroresonance. Table I shows 

base values used in the analysis and parameters different 

states are given in Table II. 

 
TABLE I: BASE VALUES OF THE SYSTEM USED FOR SIMULATION 

Base value of input voltage 158 kV 

Base value of volt-amperes 100 VA 

Base angular Frequency 2π60 rad/sec 

 

TABLE II: PARAMETERS USED FOR VARIOUS STATES SIMULATION 

System 

Parameters 

                                

Cshunt 

(nf) 

Cseries 

(nf) 

Rcore 

(MΩ) 

Rn 

(MΩ) 

Ω 

(rad/sec) 

E 

(kV) 

value 3  0.5 225 25 314 275 

 

IV. SYSTEM DESCRIPTIONS WITH NEUTRAL EARTH 

RESISTANCE 

In this case, the system which was considered for 

simulation is shown in Fig.3.  
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Fig. 3. Basic reduced equivalent ferroresonance circuit considering neutral 

earth resistance 

 

Typical values for various system parameters has been 

considered for simulation were kept the same by the case 1, 

while neutral resistance has been added to the system and its 

value is given below: 

 MRneutral 25  

The differential equation for the circuit in Fig.3 can be 

presented as follows:  
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V. SIMULATION RESULTS 

In this section of simulation, one state of ferroresonance 

has been studied in two cases, without connecting neutral 

earth resistance and with considering neutral resistance. 

A. CASE I 

Phase space and waveform of voltage for chaotic 

response were shown in Figs. (4.a) and (4.b). The phase 

plane diagram clearly shows the chaotic characteristic of the 

waveform. Amplitude of chaotic ferroresonance has been 

reached to 6p.u and nonlinear behavior is obvious. 

B. Case II(comparative study)  

Phase space and waveform of voltage for quasiperiodic 

response were shown in Figs. (5.a) and (5.b). The phase 

plane diagram clearly shows the closed trajectory 

characteristic of a quasiperiodic waveform. 
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Fig. (4.a). Phase plan diagram for chaotic motion without neutral earth 

resistance 
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Fig. (4.b). Time domain simulation for chaotic motion without neutral earth 

resistance effect 
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Fig. (5.a). Phase plan diagram for quasiperiodic motion with neutral earth 

resistance effect 
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Fig (5.b). Time domain simulation for quasiperiodic motion with neutral 

earth resistance effect 

VI. BIFURCATION DIAGRAM ANALYSIS 

In this paper, it is shown the effect of variation in the 

voltage and capacitance of the system on the ferroresonance 

overvoltage in the VT, and finally the effect of applying 

neutral resistance on this overvoltage by bifurcation 

diagrams. By using the bifurcation diagrams, Fig. (6.a) 

clearly shows the ferroresonance overvoltage in VT when 

voltage of system increase up to 5 p.u. 

 
TABLE III: SYSTEM PARAMETERS FOR BIFURCATION ANALYSIS 

System state 

   Parameters                             
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Rcore 

(MΩ) 

Rn 

(MΩ) 

Ω 

(rad/sec) 

E 

(kV) 
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Diagrams 
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Fig. (6.a). Bifurcation diagram without neutral earth resistance 
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Fig. (6.b). Bifurcation diagram for voltage of transformer versus voltage of 

system, considering neutral earth resistance effect 
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Bifurcation Diagram of Cshunt variation without considering N.R applying nonlinear core losses

 

Fig. (6.c). Bifurcation diagram for variation of Cshunt without considering 

neutral earth resistance effect 

In the last bifurcation diagram, Cshunt has been changed 

from 1p.u to 300p.u while neutral earth resistance has not 

been connected to the potential transformer. 

 

VII. CONCLUSION 

In this work it has been shown that system has been 

greatly influenced by neutral earth resistance. Connecting 

the neutral earth resistance to the system grounding, results 

in controlling the ferroresonance overvoltages in the studied 

system. Neutral earth resistance successfully, controls the 

chaotic behaviour of proposed model. Nonlinear core losses 

clearly show more chaotic behaviour when compared it with 

the linear model of the potential transformer, also nonlinear 

core losses causes more overvoltage and system shows more 

sensitivity to the initial condition and changing in the system 

parameters value.  Finally, system shows less sensitivity to 

initial conditions and best controlling ferroresonance 
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overvoltages in the presence of the neutral earth resistance. 
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