

Abstract— Complexities of object-oriented software such as

inheritance and polymorphism make behavior analysis

significantly difficult, because the states of the objects may

cause faults that cannot be easily revealed with traditional

techniques. In this paper, we propose a new approach to object

oriented software simulation by mapping the specification

written in UML to Colored Petri Net (CPN). By introducing an

algorithm to convert UML statechart to CPN, The model can be

built in an early phase of the software development process,

thus creating the potential for early analysis. Our proposed

method considers net-explosion problem and the generated Net

covers all instances of objects from different classes in the same

hierarchy. A case study is presented to show the benefit of our

approach and resulting Net is implemented in CPN-Tools.

Index Terms—CPN, class hierarchy, object token,

object-oriented , statechart

I. INTRODUCTION

Software analysis and testing is a crucial activity to

guarantee the quality and the reliability of the software. It is

often said that the cost for correcting an error after software

release is four times more than doing an error found at testing

phase, and even 50 times more than at design phase [1],[2],

thus being able to simulate the system in the early phase of

system development will speed up the test phase and

increases the reliability. Object-oriented(OO) approach is

one of the approaches to develop software efficiently that

enabling us to reduce or eliminate some typical problems of

procedural software, but may introduce new problems that

can result in classes of faults hardly addressable with

traditional testing techniques [3],[4]. In particular, state--

dependent faults tend to occur more frequently in OO

software than in procedural software. Almost all objects have

an associated state, and the behavior of member function

invoked on an object typically depends on the object's state.

Such faults can be very difficult to reveal because they cause

failures only when the objects are exercised in particular

states [5].

One of the most important issues in OO software analysis

is system simulation, which ensures class implementations

work properly. There have been some analysis and test

methods proposed in the literature. Most of them are based on

Extended Finite State Machine (EFSM) models, such as [6],

Manuscript received April 6, 2012; revised May 12,2012.

F. A. is with the National Institute of Standards and Technology, Boulder,

CO 80305 USA (e-mail: author@ boulder.nist.gov).

S. B. Jr. is with Rice University, Houston, TX 77005 USA. He is now

with the Department of Physics, Colorado State University, Fort Collins, CO

80523 USA (e-mail: author@lamar. colostate.edu).

T. C. is with the Electrical Engineering Department, University of

Colorado, Boulder, CO 80309 USA, on leave from the National Research

Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

[7],[8]. However, these models are only a program

verification technique, and produce events by observing a

carefully chosen path in the EFSM to confirm the correctness

of the traversed transitions in the path. A method for

generating test cases that detects the given faults is proposed

in [9].

In this paper, we propose a new approach to OO software

simulation by mapping the specification written in UML to

CPN. In order to overcome net-explosion problem we adopt

the idea proposed in [10], we picked UML statechart rather

than state transition diagram (STD) and we introduce rules to

make special tokens named Object Token (OT) that covers all

objects instead of simple symbolic tokens. These changes

enable us to introduce a new algorithm to mapping UML

statechart to CPN which is capable of covering all instances

of objects from different classes in the same hierarchy. A case

study is presented to show the benefit of our approach and

resulting Net is implemented in CPN-Tools.

The rest of the paper is organized as follows. The next

section is an introduction to CPN and UML Statecharts. In

section 2, we show the basic idea of translating statechart to

CPN. Section 3 presents the steps of our translation technique

and its mapping algorithm. Section 4 presents a simplified

case study of banking system account and its analysis by

using the existing tool of CPN, called CPN-Tools, and is also

presented. In section 5 conclusion and future work is

presented..

To insert images in Word, position the cursor at the

insertion point and either use Insert | Picture | From File or

copy the image to the Windows clipboard and then Edit |

Paste Special | Picture (with “Float over text” unchecked).

INTERNATIONAL JOURNAL OF MODELING AND

OPTIMIZATION reserves the right to do the final formatting

of your paper.

II. CPN AND UML STATECHARTS

In this section, we illustrate general concept of CPN and a

brief sketch of UML Statechart is also mentioned in this

section.

A. Colored Petri Net (CPN)

Fig. 1. An example of CPN

A New Approach to Object Oriented Software Simulation

Based on UML Statechart and Colored Petri Net

E. Mirzaeian , M.Babazadeh, S. Ghaderi Mojaveri, and H. Motameni

299

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

Fig. 1 [10] illustrates its simple example. It contains

"places", "transitions" and "arcs", which are represented with

circles, rectangles and arrows respectively. Marking, which

is a map from places to tokens, expresses the state of the

system that is specified with a Petri net. The movement of

tokens denotes state transitions. More concretely, if each of

the input places to a transition has at least one token, the

transition "fires" and the tokens move to the output places.

This movement corresponds to a state transition of the

system. In CPN, we can attach some attributes so called

"colors" to places.

Petri-Nets [11], is one of formal techniques that has the

ability to model concurrency of systems and the ability to

analyze concurrent behavior.In Colored Petri Nets (CPN)

[12], proposed by Jansen, which is an extended version of

Petri net the tokens have values which are typed with "color"

and the computation expressions on "colors" are associated

with transitions.

The attributes of tokens are defined with "colors" as the

types of the attribute values. In the figure, the place "Call" has

exactly one token and the token has the value "1" whose

"color" is "Thread" (int), the readers can find the colors

associated with a place. They denote which colors of tokens

can be accepted at the place. For example, the place "Call"

can only receive the tokens of the color "Thread".

Expressions can be attached to arcs which connects

transitions with places. The expressions restrict the tokens

that can flow on the arcs. In this figure, the expression "1 'i"

associated with the arc between places "Call" and transition

"Operation" represents that exactly one token can flow on it.

The attribute value of the flowing token is assigned to the

variable "th", whose color is "Thread", occurring in the

expression. We can describe a "Guard" on a transition to

control firing the transition. In the figure, "Guard" is

represented "[i = 1]" which means that if the value of a token

from "Argument" place is 1, then the guard condition is

satisfied.

A transition in a CPN is fire-able if the following

conditions hold.

Each of the places input to the transition has at least one

token.

The expressions attached to the input arcs to the transition

hold for the tokens in the input places.

The guard attached to the transition hold.

B. UML Statechart

UML state diagram [13] models the behavior of a single

object. It specifies the possible abstract states of the instances

of a class. Its basic elements are:

1) Simple State

A simple state represents one of the finite numbers of

abstract states in which the object modeled by the state

diagram may find itself. It is a state of the object during

which it satisfies some conditions, performs actions and waits

for events. In UML such a state is represented by a rounded

rectangle.

2) Pseudo State

A state diagram starts with a pseudo initial state shown by

a small solid circle. The solid circle is, in fact, marking the

initial state and that is why it is a pseudo state. A bull’s eye

circle represents the final pseudo state. A state diagram must

have the initial pseudo state, although the final pseudo state is

optional.

3) Composite State

A Composite State is composed of more than one

sequential or concurrent sub-state and is called a sequential

composite state or a concurrent composite state depending

upon the kind of sub-state it has. If a sequential composite

state is active then exactly one of its sub-states is also active.

If a concurrent composite state is active then one of the nested

states from each concurrent state is also active.

4) Transition

A transition represents an allowed change from a source

state to a target state. Transitions from one state to another are

represented by a directed edge. A transition may have an

event, a guard and an action associated with it. An event is the

cause of a transition and is sometimes called a trigger. A

guard is a Boolean expression, presented in square brackets,

that prevents a transition being taken unless the condition

evaluates to true. An action is a function that represents the

effect of a transition and is invoked on the object that owns

the state machine as a result of the transition. Instead of going

to a different state, a transition may have the same source and

target state. Such transitions represent situations where a

message is received but does not result in a change of state.

These transitions are called self-transitions. Transitions

without an associated event are called trigger-less transitions.

Fig. 2 (a) shows typical statechart of super-class and (b)

inherited class.

Fig. 2. A simple statechart

III. RELATIONSHIP BETWEEN CPN AND STATECHART

Fig. 3. A simple mapping of statechart to CPN

In [14] a mapping from STD to low-level Petri net is

presented. We adapt this idea in our mapping approach to

convert each state and its corresponding transitions to an

equivalent CPN place and transition as it is shown in fig. 3. a

We use this simple mapping in different way, just as it

shown in figure 3.b. in order to make this method suitable to

300

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

cover all instances of objects in OO system with more

complex data structure instead of low level tokens more

changes must be applied. The following sections discuss our

mapping in more detailed steps.

IV. CONVERTING UMLSTATECHART TO CPN

In this section we introduce some definitions which are

essential in Object Token concept and its structure. Detailed

steps and mapping algorithm are also presented.

A. Definitions

In OO systems object state in the only difference between

instances of one class and it depends on value of its

properties; therefore object data structure plays important

role in OO software system simulation. Other class member

such as methods can be implemented once and can be used

for all instance of under simulating objects. To present the

data structure used in our mapping method, we categorized

the data member of class in two categories.

Definition 1. Sensitive data member is the one that changes

in its value may cause the object to change its state. For

example in banking account system changes that make the

data member balance to negative cause the account to go to

overdrawn state as it is shown in figure 5.

Definition 2. Sensitive method is the one that can change

sensitive data member directly or indirectly. For example in

banking account system, a method such as deposit is

considered sensitive method as long as it can change the

sensitive data member balance.

Definition 3. Suppose that S is a typical state in stetechart

then pre[S] refers to all transitions that enters to state S and

next[S] refers to all transitions that leave state S. For example

in figure 2.a

pre s2 = {𝑒3, 𝑒4} , next s2 = {𝑒5}

B. Object Token

In order to cover all objects in the final CPN a special type

of token must be constructed that make it possible to

distinguish different type of object. To handle complicated

behaviour of OO systems such as polymorphism and

dynamic binding, we introduce a set of sensitive data member

of all classes in record format of CPN color-set. We also add

essential item in it named Type whose system-type is enum

color-set, so we can use it to identify different type of objects

during system simulation. It is also useful to apply type

constraint in our method. Other optional items can be added

to this record when we need to save more information of each

object. We refer to this token as Object Token (OT) and

variables of this type as ot. Object Token and its defined

variables are the only tokens that flow in the generate net.

When ot passes a transition or an arc, the simulated event

changes its content values by calling defined function in

CPN.

C. Mapping to CPN

In this section we present our mapping method in order to

obtain single and optimized CPN with least number of CPN

items based on specifications written for related classes in

same hierarchy. This method uses statecharts of these classes.

The mapping includes following steps:

Step 1: this step consist of collecting all states in statechart

of class I as𝑆𝑖 . Then we construct comSet as the set of all

common sates in all generated 𝑆𝑖 and sumSet as set sum of all

generated 𝑆𝑖 and we also must construct another set for

exclusive states in each statechart of typical class I as𝑆𝐸𝑥𝑐 𝑖.
Step 2:in this step we use the generated sets from step1 to

construct CPN, other type of sets are required in this step

such as 𝑝𝑟𝑒[𝑆]and𝑛𝑒𝑥𝑡[𝑆] that are defined as Definition 3.

Step 3: composite states must be mapped in this step by

repeating steps 1, 2 for each composite state and conncet its

corresponding entry-point and exit-point to input and output

transition.

Step 4: this step uses exclusive sets and Object Token to

apply type constrain for Generated CPN, that is, each

exclusive state must by guarded by a constraint so that only

valid Tokens are qualified to enter and pass through those

states.

More details are presented in the following algorithm.

Step 1: Generating Sets

Foreach existing statechart C do

𝑆𝑐=Set of all states in C

SumSet= 𝑆1 ∪ 𝑆2 …∪ 𝑆𝑖

ComSet= 𝑆1 ∩ 𝑆2 …∩ 𝑆𝑖

Foreach𝑆𝑖 do

𝑆𝐸𝑥𝑐 𝑖=𝑆𝑖 − 𝐶𝑜𝑚𝑆𝑒𝑡

Step 2: Creating initial CPN

Foreach state 𝑆 ∈ 𝑆𝑢𝑚𝑆𝑒𝑡 do

Create place P of type OT

Foreach𝑚 ∈ 𝑝𝑟𝑒[𝑆] do

Create transition T and Connect T to P with Arc A

Set Arc inscription A to m(ot)

If m comes from initialState then

Create Place iP of type OT

Connect iPtoT with Arc A

 Set Arc inscription A to ot

Foreach𝑚 ∈ 𝑛𝑒𝑥𝑡[𝑆] do

Create transition T and Connect P to T with Arc A

Set Arc inscription A to m(ot)

If m goes to final state then

Create Place oP of type OT

Connect T tooP with Arc A

Set Arc inscription A to ot

Step 3: Managing Composite States

Foreach composite state 𝐶𝑆 ∈ 𝑆𝑢𝑚𝑆𝑒𝑡 do

Repeat step 1-2 for CS to generate subCPN

Connect input of CS to entryPoint Place subCPN

Connect output of CS to exitPointPlace subCPN

Step 4: Adding Type Constrains

Foreachexisting none empty𝑆𝐸𝑥𝑐 𝑖as S do

Foreach Arc A mapped from pre[S] do

Add type constrain to A

Final net may have transitions that fork multiple places

with no guard. In such transitions, to select each individual

outgoing arc, we can attach a place with random selection,

although depending on analysis scenario, one may use

specified initial marking at this place to switch between

outgoing arcs in predefined order.

It is important to mention that we ignore none-sensitive

methods in our approach because these methods cannot

301

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

change object state. All These methods can be tested in

arbitrary order or individually,although in some other system

analysis level such as integration testing these methods must

be considered as well.

V. CASE STUDY

In this section, we use our approach to generate CPN from

available UML statechart of simplified Account Class

hierarchy of banking System. This system consists of a

super-class 'Account' and two subclass 'Credit' and 'Saving'

Account as shown in figure 4.

Fig. 4. Account Class of Banking system

Statecharts of these classes is also presented in figure 5.

We mentioned earlier that Object Token can be

constructed from sensitive data member of all available

classes in the same hierarchy. This information can be

extracted from class diagram, such as Fig. 4.

According to definition 1 and Object Token concept, we

construct Object Token in CPN-ML standard as follow:

Colset Type = with Credit | Saving;

Colset Account = record Accno:INT * B:INT * InvB:INT

*AT:Type;

The Account colset is a record with two sensitive data

member B (Balance) and InvB (Investment Balance) plus

Type field. Another optional field (Accno) is added to enable

us to identify different objects from same Type.

Fig. 5. Statecharts of two related classes

Resulting CPN by applying our proposed algorithm to

statecharts is implemented in CPN-Tools. In order to show

the final CPN we implemented it in multi-level form to make

it easy to understand. It is shown in figure 6 and figure 7.

To analyze the behavior and to generate system test data, at

first we should generate State Space Graph (SSG) from the

CPN. The SSG expresses traces of the marking of a CPN, i.e.

tokens on places. A node and an arc in the graph represent a

marking and a firing of a transition respectively. SSG can be

automatically generated and analyzed by existing tools such

as CPN-Tools and ASAP (Ascoveco state –space analysis

platform-CPN group).

Fig. 6. (a) Top Level CPN, (b) Sub-Level of Working.

Fig. 7. (a) Sub-Level Investment, (b) Sub-Level Overdrawn.

 (1)

VI. CONCLUSION AND FUTURE WORKS

Complexities of object-oriented software such as

inheritance and polymorphism make behavior analysis

significantly difficult, because the state of the objects may

cause faults that cannot be easily revealed with traditional

techniques. In this paper, we propose a new approach to

object oriented software simulation by mapping the

specification written in UML to CPN. By introducing a new

algorithm to convert UML statechart to CPN, The model can

be built in an early phase of the software development

process, thus creating the potential for early analysis. Our

proposed method considers net-explosion problem and the

generated Net is an optimized net which covers all Instances

of objects from different classes in the same hierarchy. Our

work in this paper considers generalization relationship only

between classes. We are investigating to expand our method

to cover association and aggregation relationship based on

the extended version of Petri Nets.

REFERENCES

[1] R. S. Pressman, “Software Engineering – A Practitioner’s Approach

Fifth Edition,” McGraw-Hill, 2001.

[2] H. Zhu, P. Hall, and 1. May, "Software Unit Test Coverage and

Adequacy," ACM Computing Surveys, April, 1997,pp.366-427.

[3] S. Barbey and A. Strohmeier, "The Problematic of Testing

Object-Oriented Software," in Proceedings of the Second Conference

302

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

on Software Quality Management, Edinburgh (Scotland, UK), vo1.2,

July, 1994, pp. 411-426.

[4] A. Orso and S. Silva, "Open Issues and Research Directions in

Object-Oriented Testing," in Proceedings of the 4th International

Conference on "Achieving Quality in Software: Software Quality in the

Communication Society" (AQUIS'98), Venice, April, 1998.

[5] V. Martena, A. Orso, and M. Pezze, "Interclass Testing of

Object-Oriented Software," in Proceedings of the 8th IEEE

international Conference on Engineering of Complex Computer

Systems (ICECCS'02), 2002.

[6] J. 1. Li and W. E. Wong, "Automatic Test Generation from

Communicating Extended Finite State Machine (CEFSM)-Based

Models," in Proceedings of the Fifth IEEE International Symposium on

Object-Oriented Real¬Time Distributed Computing (ISORC.02),

2002.

[7] R. M. Hierons, T. H. Kim , and H. Ural, "Expanding an Extended

Finite State Machine to Aid Testability," in Proceedings of the 26th

Annual International Computer Software and Applications Conference

(COMPSACp02), 2002, pp. 1-6.

[8] A. Y. Duale and M. Uyar, "A Method Enabling Feasible Conformance

Test Sequence Generation for EFSM Models," IEEE Transactions on

Computers, vol.53, no.5, 2004, pp. 614-627.

[9] H. F. Gong and J. Li, "Generating Test Cases of Object-Oriented

Software Based on EDPN and Its Mutant ," in Proceedings - IEEE The

9th International Conference for Young Computer Scientists ,Hunan

,Nov,2008, ICYCS, pp.1112-1119.

[10] H. Watanabe, H. Tokuoka, W. Wu, and M. Saeki, "A Technique for

Analyzing and Testing Object-Oriented Software Using Colored Petri

Nets," apsec, pp.182, Fifth Asia-Pacific Software Engineering

Conference (APSEC'98), 1998

[11] J. L. Peterson, "Petri Net Theory and the Modeling of Sys¬tems,"

Englewood Cliffs, New Jersey, Prentice Hall Inc., 1981,

[12] K. Jensen, "An introduction to the theoretical aspects of Colored Petri

Nets," Springer Berlin , 2006

[13] A. A. Bokhari and W. F. S. Poehlman, "Formalization of UML

State-Charts: Approaches for Handling Composite States," Department

of Computing & Software, McMaster University, Technical Report

CAS 2005-07-SP (October, 2005), 10 pp.

303

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

