
  
Abstract—This paper proposes a new structure for 

Quantum-inspired Particle Swarm Optimization (QiPSO) to 
enhance feature and parameter optimization of Evolving 
Spiking Neural Networks (ESNN). The new Dynamic 
Quantum-inspired Particle Swarm Optimization (DQiPSO) will 
be integrated within ESNN where features and parameters are 
simultaneously and more efficiently optimized. The features are 
modeled as a quantum bit vector, where probability 
computation is added to perform the feature selection task. For 
the parameters, values are presented as real numbers. A hybrid 
particle structure is required for these two different data types. 
In addition, an improved search strategy has been introduced to 
find the most relevant features and eliminate irrelevant features 
on a synthetic dataset. The results show that the proposed 
optimizer structure yields promising outcomes in identifying 
the most relevant features, and obtaining the best combination 
of ESNN parameters with faster and more accurate 
classification. 
 

Index Terms—Feature selection, particle swarm optimization, 
quantum computation, spiking neural networks.  
 

I. INTRODUCTION 
Due to inadequacies of the model optimization and feature 

selection strategies of the Evolving Spiking Neural Networks 
(ESNN), the Dynamic Quantum-inspired Particle Swarm 
Optimization (DQiPSO) is proposed in this study. The 
conventional Particle Swarm Optimization (PSO) is 
inadequate for solving problems that require probability 
computation such as in the feature selection tasks. Therefore, 
the proposed optimizer embeds the quantum information 
principles with principles of evolutionary computation in the 
PSO. According to Narayanan [1], Narayanan and Meneer [2] 
and Kasabov [3], [4], quantum computing principles have 
been seen as a source of inspiration for novel computational 
methods. Blum and Langley [5] have classified the feature 
selection techniques into three basic approaches: Embedded 
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approach [6] adds or removes features in response to 
prediction errors on new instances; Filter approach [7] as a 
pre-processing method and Wrapper approach [8] which uses 
the learning algorithm to evaluate features. In this study, we 
use Wrapper approaches with embedment of some concepts 
from the Filter and Embedded approach to utilize the 
advantages of these approaches. Using a higher number of 
features does not necessarily translate into better 
classification accuracy. In some cases, having fewer 
significant features could help reduce the processing time and 
produce good classifications. Therefore, feature optimization 
is considered as a crucial pre-processing tool in the 
classification task. 

On the other hand, similar to other neural network models, 
an optimal combination of parameters would influence the 
performance of the ESNN. It is inappropriate to manually 
adjust the parameters since this mechanism would be 
inefficient, particularly when dealing with different 
combinations for different datasets. Consequently, parameter 
optimization is vital and much research has been conducted 
on this [9]. In this paper, we are proposing an integrated 
structure in which the features and parameters are optimized 
simultaneously, and this leads to better optimization. In this 
study, we are further probing the efficiency of DQiPSO in 
selecting the most relevant features and optimizing the ESNN 
parameters. 

This paper is organized as follows; Section II discusses the 
proposed DQiPSO model and Section III provides an 
introduction to ESNN. Section IV gives details of the 
proposed method and the experimental results. Finally, 
Section V concludes the study with direction for future work. 

 

II. DYNAMIC QUANTUM-INSPIRED PARTICLE SWARM 
OPTIMIZATION (DQIPSO) 

Particle Swarm Optimization (PSO) is a population-based 
optimization technique, developed by Eberhart and Kennedy 
in 1995 [10]. However, conventional PSO is insufficient for 
problems require probability computation such as feature 
selection. Hence, quantum principles have been embedded 
into PSO as a mechanism for probability calculation and this 
is known as Quantum-inspired Particle Swarm Optimization 
(QiPSO) [11]. The main idea of QiPSO is to update the 
particle position represented in quantum angle ( q ).  

Quantum angle q  can be represented as
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 which satisfies the probability 

fundamental of 2 2sin( ) cos( ) 1q q+ = . This equation was 

derived from quantum state model 0 1y a b= + , where 
a and b  are complex numbers defining probabilities at 
which the corresponding state is likely to appear when the 
quantum bit (qubit) collapses. The common velocity update 
equation in conventional PSO is modified to get a new 
quantum angle which is translated to the new probability of 
the qubit by using Equation 1.  
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Based on the new q  velocity, the new probability of 

a and  b  is calculated using a rotation gate as follows: 
 

 (2) 

 
We propose DQiPSO as a model optimizer, which is based 

on QiPSO and our previous method described in [12]. We 
found that there is a possibility of missing the optimal ESNN 
parameter value when using only binary QiPSO. As the 
information is represented in binary structure, the conversion 
from binary to real value will lead to such problems, 
especially if the selected number of qubits representing the 
parameter value is insufficient. To overcome this problem, a 
combination of QiPSO and conventional PSO is proposed. 
The DQiPSO particle is divided into two parts; the first part 
uses quantum probability computation for feature selection 
and another part holds the real value for parameters as shown 
in Figure 1. This method not only effectively solves this 
problem, but also eliminates one parameter which hold 
number of qubits representing the parameter value. Ӟ 
 

 
Fig. 1. The proposed hybrid particle structure in DQiPSO. 

 
In addition, the search strategy of QiPSO is based on 

random selection at the beginning of the process. Each 
particle will update itself based on the best solution 
subsequently found. A major problem with this approach is 
the possibility of not selecting the relevant features at the 
beginning; other particles in the entire process are thus 
affected. This is due to each particle updating its information 

without relevant features. Therefore, a new strategy is 
proposed in which five types of particles in the DQiPSO are 
considered. Apart from the normal particle, referred to as the 
Update Particle, which renews itself based on pbest and gbest 
information, four new types of particles are added to the 
swarm. The first type is the Random Particle, which will 
randomly generate new sets of features and parameters in 
every iteration to increase the robustness of the search. The 
second type is the Filter Particle, which selects one feature at 
a time and feeds it to the network and calculates the fitness 
value. This process is repeated for each feature. Any features 
with above average fitness will be considered as relevant. 
This method is targeted at linear separation problems. The 
third particle type is the Embed In Particle in which input 
features are added to the network one by one. If the newly 
added feature improves fitness, it will be considered a 
relevant feature. Otherwise, the feature will be removed. The 
final particle type is the Embed Out Particle which starts the 
identification process with all features fed to the networks to 
get the initial fitness value. These features are gradually 
removed one by one. If removing a feature causes decrement 
of the fitness value, then this feature will be considered 
relevant and hence will be kept. Otherwise, the feature will be 
considered irrelevant and removed. 

The main idea behind Filter, Embed In and Embed Out 
particles is to identify the relevancy of each feature and 
reduce the number of candidates until a small subset remains. 
For subsequent iterations, features considered relevant will 
be selected randomly to find the best combination of 
significant features. This strategy helps to solve unevaluated 
relevant features, while reducing the search space and 
facilitating the optimizer in finding relevant features faster.  
Similar to the standard PSO in updating the particles, if new 
particle found to be the best solution, then it will be stored as 
a gbest.  In this scenario, some improvements have also been 
proposed for the update strategy. This includes replacing the 
gbest particle with a new particle if the fitness value is higher 
or equivalent, but with a lower number of selected features.  
Due to the robust search space provided by DQiPSO, fewer 
particles are needed to perform the optimization tasks; hence, 
less processing time can be achieved. The structure of this 
strategy is illustrated in Fig. 2. 

 

 
Fig. 2. The proposed hybrid particle structure in DQiPSO. 

 

III. EVOLVING SPIKING NEURAL NETWORKS 
Hopfield [13] presented a model of spiking neurons in 

1995. Since then, there have been several enhancements and 
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variants to the spiking neuron model. One of the variations is 
Evolving Spiking Neural Networks (ESNN) proposed in [14]. 
The ESNN architecture in this paper is consisting of an 
encoding method for real value data to spike time, network 
model and learning method. Implementation for the 
information encoding methods is based on Population 
Encoding [15] where a single input value is encoded to 
multiple pre-synaptic neurons of M . Each neuron represents 
a certain spike of firing time. The firing time of a pre-synaptic 
neuron is calculated using the intersection of the Gaussian 
function. The Gaussian centre is calculated using Equation 3 
and the width is computed using Equation 4 with the variable 
interval of min max,I Iè øê ú  and parameter b  controls the width.  
 

min max min(2* 3) / 2*( ) / ( 2).I i I I Mm = + - - -   
(3) 

max min1/ ( ) / ( 2) 1 2.I I M wheres b b= - - ¢ ¢   
(4) 

 
Thorpe’s model [16] has been selected for the neuron 

model because of its effectiveness and simplicity. The 
fundamental concept of this model is that the earlier spikes 
received by a neuron have a stronger weight compared with 
later spikes. Once the neuron reaches a certain amount of 
spikes and the Post-Synaptic Potential (PSP) exceeds the 
threshold value, it fires and becomes disabled. The neuron in 
this model can only fire once. The computation of the PSP of 
neuron i is presented in Equation 5, 
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where jiw  being the weight of pre-synaptic neuron j . iMod  

being a parameter called modulation factor with an interval 
of [0,1] and ( )jorder  representing the rank of the spike 
emitted by the neuron. The ( )jorder  starts with 0 if it spikes 
first amongst all pre-synaptic neurons and increases 
according to firing time. For the ESNN’s One-pass learning 
algorithm, each training sample creates a new output neuron. 
The trained threshold values and the weight pattern for that 
particular sample are stored in the neuron repository. 
However, if the weight pattern of the trained neuron is greatly 
resembles a neuron in the repository, it will merge into the 
most similar one. The merging process involves modifying 
the weight pattern and the threshold to the average value. 
Otherwise, it will be added to the repository as a newly 
trained neuron. The major advantage of ESNN is the ability 
of the trained network to produce new samples without 
retraining. More details on ESNN can be found in [14] and 
[17] where a detailed ESNN learning algorithm is described 
in [17]. 
 

IV. EXPERIMENTS 
From the well-known wrapper approach, DQiPSO 

interacts with an induction method; and in this case the 

ESNN, optimizes the ESNN parameters; Modulation Factor 
( Mod ), Proportion Factor ( C ) and Similarity ( Sim ) as well 
as identifying the relevant features. All particles are 
initialized with a random value and subsequently interact 
with each other based on classification accuracy. Since there 
are two components to be optimized, each particle is divided 
into two parts. The first part of each hybrid particle holds the 
feature mask where information is stored in a string of qubits. 
In this case, the value 1 represents the features selected, and 
value 0 represents those not selected. Another part holds 
parameters of ESNN. The proposed integrated framework is 
shown in Figure 3. 
 

 
Fig. 3. An integrated ESNN-DQiPSO framework for feature selection and 

parameter optimization. 
 

A. Setup 
The proposed ESNN-DQiPSO method was tested on a 

Uniform Hypercube dataset which was introduced in [18].  
Thirty features were created with 10 relevant features, where 
a sample belongs to class 1 when 1 *i

ir g a-<  for i  = 1 till 
10. Parameters chosen were g  = 0.8 and a = 0.5. In addition 
to this, several irrelevant features were added into the dataset. 
The irrelevant features which are not relevant to determining 
the output class consist of 10 random features with the 
random value of [0,1] and 10 redundant features copied from 
relevant features with an addition of Gaussian noise of 0.3. 
The features were arranged randomly to simulate the real 
world problem where relevant features are scattered in the 
dataset as follows: 

 
TABLE I: FEATURE  ARRANGEMENT  

Features Arrangement 
Relevant 02, 04, 09, 10, 11, 15, 19, 20, 26, 30 
Redundant 03, 07, 12, 14, 17, 18, 21, 25, 27, 28 
Random 01, 05, 06, 08, 13, 16, 22, 23, 24, 29 

 

The problem consists of 500 samples, equally distributed 
into two classes. It was applied to the proposed framework 
and compared with our previous QiPSO method [12] and 
ESNN with standard PSO. However, because standard PSO 
is inadequate for feature selection, it only optimizes the 
ESNN parameters. Based on our preliminary experiment, 20 
ESNN’s pre-synaptic neurons were chosen. For the DQiPSO, 
18 particles were used, consisting of six Update, three Filter, 
three Random, three Embed In and three Embed Out. For the 
QiPSO, 20 particles were used. 1C  and 2C  were set to 0.05 
to balance the exploration between gbest and pbest with the 
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inertia weight w  = 2.0.  Ten-fold cross validations were used 
and the average result was computed in 500 iterations. 

B. Results 
Fig. 4 illustrates the comparison of selected features from 

DQiPSO and QiPSO during the learning process. The lighter 
colour means more frequent corresponding features are 
selected and darker means otherwise. All the features have 
been ranked based on the number of selected features from 
10 runs to determine their relevancy. From the figure, 10 
relevant features which contained the most information can 
be clearly identified and are constantly being selected by 
DQiPSO. In contrast, the redundant and random features are 
completely rejected during the optimization process. 
DQiPSO takes less than 100 iterations to identify the relevant 
and irrelevant features. Based on the feature ranking, the 
most relevant features found are Feature 9 and Feature 20, 
followed by Feature 10, Feature 11, Feature 26, Feature 2, 
Feature 15, Feature 19, Feature 30 and Feature 4. In contrast, 
the ability of the QiPSO to reject the irrelevant features is 
unsatisfactory.  Most of the irrelevant features are still being 
selected, which contributes to the low classification accuracy 
and increased computation time. The most relevant features 
found by QiPSO are Feature 10 and 15, followed by Feature 
4, Feature 25, Feature 2, Feature 9, Feature 11, Feature 18, 
Feature 19 and Feature 20. Other features are occasionally 
selected and can be considered as irrelevant features by 
QiPSO. Some relevant features are also being regarded as 
irrelevant due to the number of selected is low, while some 
irrelevant features which contain no information are 
considered as relevant by QiPSO. This situation has affected 
the results and overall classification performance of the 
ESNN-QiPSO. 

 

 
Fig. 4. Evolution of feature selection. 

 

Fig. 5 shows the results of parameter optimization.  All 
parameters evolve steadily towards a certain optimal value, 
where the correct combination together with the selected 
relevant features leads to better classification accuracy. In 
terms of the classification result, the average accuracy for 
ESNN-DQiPSO is 99.25% with the result of every single run 
consistently above 98%. For the ESNN-QiPSO algorithm, 
the average accuracy is 96.57% which is consistent with our 
previous results in [12]. The proposed DQiPSO and QiPSO 
methods are able to select relevant features with few or 
occasionally no irrelevant features, while simultaneously 
providing nearly optimal parameter combinations in the early 
stage of learning. This situation leads to acceptably high 
average accuracy at the beginning of the learning process. 
For the ESNN-PSO algorithm, although the classification 
accuracy is 94.43%, this algorithm is entirely dependent on 
the parameter optimization which has affected the results, 
giving the lowest accuracy. The testing results for 
ESNN-DQiPSO, ESNN-QiPSO and ESNN-PSO are 95.99%, 
91.58% and 83.93% respectively. 

 

 
Fig. 5. a). Classification accuracy and b) parameter optimization result. 
 

V. CONCLUSION 
This paper presents a novel method of optimizing features 

and ESNN parameters using DQiPSO. Overall, the proposed 
method demonstrates a satisfactory result in this experiment. 
The results have shown that DQiPSO is able to identify the 
relevant features and optimize all parameters which 
contributes to better classification results compared to 
QiPSO. Our future work will focus on testing the proposed 
method on real world problem datasets with comparison to 
other classification algorithms such as the Multi-Layer 
Perceptron (MLP) and Probabilistic Spiking Neural Network 
as proposed in [19]. 
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